PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1412.
Published online 2009 May 29. doi:  10.1107/S160053680901931X
PMCID: PMC2969604

2,4,6-Tri-p-tolyl­pyridine

Abstract

In the title compound, C26H23N, the complete molecule is generated by crystallographic mirror symmetry, with the N atom and four C atoms lying on the reflection plane. The dihedral angles between the pyridine ring and pendant benzene rings are 2.9 (1), 14.1 (1) and 14.1 (1)°. Neighbouring mol­ecules are stabilized through inter­molecular π–π inter­actions along the c axis [centroid-to-centroid distance = 3.804 (2) Å], forming one-dimensional chains.

Related literature

For the syntheses of related 2,4,6-triaryl­pyridine compounds, see: Hou et al. (2005 [triangle]); Huang et al. (2005 [triangle]); Tewari et al. (1981 [triangle]); Yang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1412-scheme1.jpg

Experimental

Crystal data

  • C26H23N
  • M r = 349.45
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1412-efi1.jpg
  • a = 15.337 (5) Å
  • b = 20.778 (7) Å
  • c = 6.322 (2) Å
  • V = 2014.8 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 K
  • 0.24 × 0.16 × 0.15 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.975, T max = 0.986
  • 7912 measured reflections
  • 2037 independent reflections
  • 924 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.139
  • wR(F 2) = 0.342
  • S = 1.26
  • 2037 reflections
  • 132 parameters
  • 47 restraints
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901931X/at2790sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901931X/at2790Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Key Discipline Construct Program of Hunan province and the Foundation of Hunan Province Education Office (grant No. 08 C178) for supporting this study.

supplementary crystallographic information

Comment

2,4,6-Triarylpyridines are used as good building blocks in supramolecular chemistry because of their stacking ability, directional H-bonding and coordination, and which have also been prepared by many procedures (Hou et al., 2005; Huang et al., 2005; Tewari et al., 1981; Yang et al., 2005). We here reported the synthesis and crystal structure of 2,4,6-tri-p-tolylpyridine.

As shown in Fig.1, the title compound is a neutral organic molecule with a mirror symmetry through the methyl C15 atom and N1 atom of the central pyridine. The central pyridine is almost coplanar with the C11-14 benzene ring with a dihedral angle of 2.9 (1) °, however, which form bigger dihedral angles of 14.1 (1) ° with the other two outer benzene rings, thus the whole molecule is nonplanar. In the crystal packing, neighboring molecules form intermolecular π–π interactions with the centroid- to-centroid distances of 3.804 (2) Å to give a one-dimensional chain along the c-axis.

Experimental

The title compound was synthesized with a modified procedure (Yang et al., 2005). A mixture of 5-tri-p-tolyl-pentane-1,5-dione (1.85 g, 5 mmol), ammonium acetate (3.85 g, 50 mmol) and ethanol (60 mL) was refluxed for 20 h. Upon cooling to room temperature, a precipitate was filtered, washed with ethanol/water (1:1) and dried to afford the product, purified by column chromatography on silica with petroleum/ethyl acetate. A white solid was obtained and was further recrystallized from ethanol to give colourless crystals [yield: 0.85 g, 48.6%].

Refinement

The carbon-bound H atoms were placed at calculated positions (C—H = 0.93 and 0.96 Å) and refined as riding, with U(H) = 1.2Ueq(C) for benzenel H atoms, and C—H = 0.96 Å and Uiso = 1.5Ueq (C) for methyl H atoms.

Figures

Fig. 1.
The title molecule with displacement ellipsoids drawn at the 30% probability level, and H atoms as spheres of arbitrary radius.

Crystal data

C26H23NF(000) = 744
Mr = 349.45Dx = 1.152 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 562 reflections
a = 15.337 (5) Åθ = 2.7–22.4°
b = 20.778 (7) ŵ = 0.07 mm1
c = 6.322 (2) ÅT = 295 K
V = 2014.8 (11) Å3Prism, colourless
Z = 40.24 × 0.16 × 0.15 mm

Data collection

Bruker SMART APEX area-detector diffractometer2037 independent reflections
Radiation source: fine-focus sealed tube924 reflections with I > 2σ(I)
graphiteRint = 0.067
[var phi] and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −17→18
Tmin = 0.975, Tmax = 0.986k = −20→25
7912 measured reflectionsl = −7→5

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.139Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.342H-atom parameters constrained
S = 1.26w = 1/[σ2(Fo2) + (0.0923P)2 + 1.1054P] where P = (Fo2 + 2Fc2)/3
2037 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.27 e Å3
47 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.4178 (6)0.5536 (4)0.7562 (16)0.180 (4)
H1A0.41970.55010.90760.270*
H1B0.37760.58690.71650.270*
H1C0.47490.56390.70380.270*
C20.3882 (5)0.4900 (4)0.6625 (15)0.139 (3)
C30.3948 (6)0.4331 (5)0.7686 (15)0.158 (3)
H30.41710.43340.90530.190*
C40.3696 (5)0.3750 (4)0.6812 (13)0.143 (3)
H40.37500.33780.76240.172*
C50.3376 (4)0.3699 (4)0.4833 (11)0.098 (2)
C60.3283 (6)0.4267 (5)0.3786 (13)0.139 (3)
H60.30500.42610.24280.167*
C70.3522 (6)0.4853 (4)0.4650 (15)0.163 (4)
H70.34350.52260.38660.196*
C80.3116 (4)0.3075 (3)0.3878 (9)0.0859 (18)
C90.2622 (3)0.3058 (2)0.2112 (8)0.0646 (14)
H90.24550.34430.14790.077*
N10.3373 (5)0.25000.4758 (13)0.123 (3)
C100.2366 (5)0.25000.1249 (12)0.075 (2)
C110.1802 (4)0.2500−0.0662 (12)0.0673 (19)
C120.1525 (4)0.3049 (3)−0.1594 (11)0.107 (2)
H120.17130.3442−0.10570.128*
C130.0972 (5)0.3044 (3)−0.3317 (11)0.121 (2)
H130.07940.3438−0.38730.145*
C140.0676 (6)0.2500−0.4240 (15)0.103 (3)
C150.0081 (6)0.2500−0.6115 (15)0.133 (3)
H15A0.03350.2753−0.72270.199*0.50
H15B−0.04720.2681−0.57220.199*0.50
H15C−0.00010.2066−0.66000.199*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.158 (7)0.165 (7)0.217 (9)0.049 (6)−0.066 (7)−0.093 (7)
C20.111 (5)0.149 (7)0.157 (7)0.030 (5)−0.054 (5)−0.053 (5)
C30.153 (5)0.181 (7)0.141 (6)−0.015 (5)−0.063 (5)−0.029 (5)
C40.142 (5)0.165 (6)0.122 (5)−0.027 (4)−0.049 (5)−0.006 (5)
C50.074 (4)0.142 (5)0.078 (4)0.003 (4)−0.022 (3)−0.008 (4)
C60.157 (7)0.141 (7)0.119 (7)0.036 (6)−0.052 (5)−0.024 (6)
C70.186 (9)0.132 (7)0.171 (9)0.057 (6)−0.061 (8)−0.042 (6)
C80.063 (3)0.120 (5)0.075 (4)0.002 (4)0.002 (3)0.001 (4)
C90.054 (3)0.080 (3)0.060 (3)0.011 (3)−0.013 (3)−0.001 (3)
N10.089 (6)0.180 (9)0.098 (6)0.0000.011 (5)0.000
C100.055 (4)0.103 (6)0.065 (5)0.0000.011 (4)0.000
C110.060 (4)0.076 (5)0.066 (5)0.000−0.002 (4)0.000
C120.119 (5)0.092 (4)0.110 (5)−0.002 (4)−0.037 (4)0.003 (4)
C130.114 (5)0.141 (6)0.108 (5)0.004 (4)−0.038 (4)0.031 (4)
C140.078 (5)0.152 (7)0.079 (5)0.000−0.020 (4)0.000
C150.098 (6)0.216 (9)0.085 (6)0.000−0.022 (5)0.000

Geometric parameters (Å, °)

C1—C21.518 (10)C9—C101.340 (6)
C1—H1A0.9600C9—H90.9300
C1—H1B0.9600N1—C8i1.375 (5)
C1—H1C0.9600C10—C9i1.340 (6)
C2—C31.361 (8)C10—C111.486 (10)
C2—C71.369 (8)C11—C12i1.352 (6)
C3—C41.384 (10)C11—C121.352 (6)
C3—H30.9300C12—C131.381 (8)
C4—C51.348 (9)C12—H120.9300
C4—H40.9300C13—C141.352 (6)
C5—C61.361 (9)C13—H130.9300
C5—C81.484 (8)C14—C13i1.352 (6)
C6—C71.384 (9)C14—C151.495 (12)
C6—H60.9300C15—H15A0.9600
C7—H70.9300C15—H15B0.9600
C8—C91.350 (7)C15—H15C0.9600
C8—N11.375 (5)
C2—C1—H1A109.5N1—C8—C5121.1 (6)
C2—C1—H1B109.5C10—C9—C8121.5 (6)
H1A—C1—H1B109.5C10—C9—H9119.2
C2—C1—H1C109.5C8—C9—H9119.2
H1A—C1—H1C109.5C8i—N1—C8120.6 (9)
H1B—C1—H1C109.5C9—C10—C9i119.8 (7)
C3—C2—C7114.7 (9)C9—C10—C11120.1 (4)
C3—C2—C1122.7 (8)C9i—C10—C11120.1 (4)
C7—C2—C1122.6 (9)C12i—C11—C12115.0 (8)
C2—C3—C4122.7 (8)C12i—C11—C10122.5 (4)
C2—C3—H3118.7C12—C11—C10122.5 (4)
C4—C3—H3118.7C11—C12—C13122.1 (6)
C5—C4—C3122.7 (9)C11—C12—H12118.9
C5—C4—H4118.6C13—C12—H12118.9
C3—C4—H4118.6C14—C13—C12123.5 (7)
C4—C5—C6114.9 (8)C14—C13—H13118.2
C4—C5—C8123.0 (7)C12—C13—H13118.2
C6—C5—C8122.1 (6)C13—C14—C13i113.6 (9)
C5—C6—C7122.9 (8)C13—C14—C15123.2 (4)
C5—C6—H6118.5C13i—C14—C15123.2 (4)
C7—C6—H6118.5C14—C15—H15A109.5
C2—C7—C6122.0 (9)C14—C15—H15B109.5
C2—C7—H7119.0H15A—C15—H15B109.5
C6—C7—H7119.0C14—C15—H15C109.5
C9—C8—N1118.2 (7)H15A—C15—H15C109.5
C9—C8—C5120.6 (5)H15B—C15—H15C109.5
C7—C2—C3—C41.9 (14)C5—C8—C9—C10−178.7 (6)
C1—C2—C3—C4−178.5 (8)C9—C8—N1—C8i−1.3 (11)
C2—C3—C4—C50.8 (15)C5—C8—N1—C8i178.9 (5)
C3—C4—C5—C6−2.7 (12)C8—C9—C10—C9i−1.8 (10)
C3—C4—C5—C8179.1 (7)C8—C9—C10—C11178.3 (5)
C4—C5—C6—C71.8 (12)C9—C10—C11—C12i−179.9 (6)
C8—C5—C6—C7180.0 (7)C9i—C10—C11—C12i0.2 (10)
C3—C2—C7—C6−2.8 (14)C9—C10—C11—C12−0.2 (10)
C1—C2—C7—C6177.6 (8)C9i—C10—C11—C12179.9 (6)
C5—C6—C7—C21.0 (15)C12i—C11—C12—C132.5 (12)
C4—C5—C8—C9164.8 (6)C10—C11—C12—C13−177.3 (6)
C6—C5—C8—C9−13.2 (10)C11—C12—C13—C14−1.3 (12)
C4—C5—C8—N1−15.4 (10)C12—C13—C14—C13i0.0 (15)
C6—C5—C8—N1166.6 (7)C12—C13—C14—C15−179.6 (8)
N1—C8—C9—C101.5 (9)

Symmetry codes: (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2790).

References

  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hou, L., Li, D., Shi, W. J., Yin, Y. G. & Ng, S. W. (2005). Inorg. Chem.44, 7825–7830. [PubMed]
  • Huang, X. Q., Li, H. X., Wang, J. X. & Jia, X. F. (2005). Chin. Chem. Lett.16, 607–608.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tewari, R. S., Dubey, A. K., Misra, N. K. & Dixit, P. D. (1981). J. Chem. Eng. Data, 26, 106–108.
  • Yang, J. X., Tao, X. T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc.127, 3278–3279. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography