PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1307.
Published online 2009 May 20. doi:  10.1107/S1600536809017632
PMCID: PMC2969600

[1-(1-Adamantylamino)ethyl­idene]oxonium methane­sulfonate

Abstract

In the title salt, C12H20NO+·CH3SO3 , the [1-(1-adamantyl­amino)ethyl­idene]oxonium cations and methane­sulfonate anions are linked into chains along the a axis via O—H(...)O and N—H(...)O hydrogen bonds. All non-H atoms of the acetamido group are essentially planar, with a maximum deviation of 0.0085 (12) Å. In comparison with related structures, the carbonyl C=O bond is slightly elongated [1.249 (2) Å], whereas the amide C—N bond is shortened [1.292 (2) Å].

Related literature

For previously published structures of N-(1-adamant­yl)­acetamide, see: Pröhl et al. (1997 [triangle]); Kashino et al. (1998 [triangle]); Mizoguchi et al. (1997 [triangle]). For the preparation of N-(1-adaman­t­yl)­acetamide, see: Bach et al. (1979 [triangle], 1980 [triangle]); Gerzon et al. (1963 [triangle]); Stetter et al. (1959 [triangle], 1960 [triangle]). For the biological activity of related adamantane derivatives, see: Davies et al. (1964 [triangle]); Aldrich et al. (1971 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1307-scheme1.jpg

Experimental

Crystal data

  • C12H20NO+·CH3SO3
  • M r = 289.38
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1307-efi1.jpg
  • a = 12.9848 (7) Å
  • b = 11.2625 (6) Å
  • c = 19.0037 (10) Å
  • V = 2779.1 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 120 K
  • 0.40 × 0.40 × 0.35 mm

Data collection

  • Kuma KM-4 CCD diffractometer
  • Absorption correction: multi-scan (Xcalibur; Oxford Diffraction, 2006 [triangle]) T min = 0.824, T max = 0.914
  • 19453 measured reflections
  • 2454 independent reflections
  • 2000 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.102
  • S = 1.09
  • 2454 reflections
  • 180 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: Xcalibur (Oxford Diffraction, 2006 [triangle]); cell refinement: Xcalibur (Oxford Diffraction, 2006 [triangle]); data reduction: Xcalibur (Oxford Diffraction, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017632/pk2161sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017632/pk2161Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The financial support of this work by the Czech Ministry of Education (project No. MSM 7088352101) is gratefully acknowledged.

supplementary crystallographic information

Comment

Since 1964, 1-aminoadamantane and related compounds have seen extensive examination due to their antiviral activity (Davies et al., 1964; Aldrich et al., 1971). The consecution of adamantane bromination, reaction with acetonitrile and final hydrolysis of N-(1-adamantyl)acetamide provides a viable synthetic method for 1-aminoadamantane production. The synthesis of N-(1-adamantyl)acetamide via nucleophilic substitution from varied bridgehead-substituted derivatives was previously described. For this purpose 1-iodoadamantane (Bach et al., 1980), 1-bromoadamantane (Stetter et al., 1960), 1-chloroadamantane (Gerzon et al., 1963), 1-alkoxyadamantane (Bach et al., 1979; Bach et al., 1980) or adamantan-1-ol (Stetter et al., 1959) were used as starting material. The title salt was prepared by replacement of a good-leaving group in 1-adamantyl methanesulfonate with acetonitrile.

In the structure of title salt (Fig. 1), the O-protonated N-(1-adamantyl)acetamide and methansulfonate are linked alternately into chains parallel to the a axis via O1–H2···O2 and N1–H1···O3 hydrogen bonds (Table 1, Fig. 2). All non-hydrogen atoms of the acetamido group (C11, C12, N1, O1) and C1 lie in plane with the maximum deviation from the best plane being 0.0085 (12) Å for atom N1. The distance of the H1 and H2 from the best plane (C1, C11, C12, N1, O1) is 0.004 (19) and 0.11 (2) Å respectively. In comparison with previously published structures of N-(1-adamantyl)acetamide (Pröhl et al., 1997; Kashino et al., 1998 and Mizoguchi et al. , 1997), the length of N1–C11 is slightly shorter, being 1.292 (2) Å [published 1.323 (5)–1.345 (2) Å] and C11–O1 is slightly longer at 1.294 (2) Å [published 1.230 (5)–1.237 (4) Å]. This may be attributed to enhanced electron withdrawing effect of the protonated O1.

Experimental

1-Adamantyl methansulfonate (500 mg, 2.17 mmol) was stirred in 20 ml of dry acetonitrile at room temperature for 1 h. After this period, the solution was allowed to stand at room temperature for several days and growth of crystals was observed. The solid was filtered off with suction and mother liquor was evaporated to obtain a second crop of title compound as a colourless powder. The combined yield of the title salt was 583 mg (93%). 1H NMR spectra were similar to those obtained for equimolar mixture of separately prepared N-(1-adamantyl)acetamide and methanesulfonic acid.

Refinement

H atoms were found in difference Fourier maps. Those attached to N and O were refined while those attached to C were placed in idealized positions with constrained distances of 0.98 Å (RCH3) and 0.99 Å (R2CH2). Uiso(H) values were set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

Figures

Fig. 1.
ORTEP of the asymmetric unit with atoms represented as 50% probability ellipsoids. Hydrogen bonding is indicated by dashed lines.
Fig. 2.
Hydrogen bonded chains of alternating protonated N-(1-adamantyl)acetamide and methansulfonate parallel to the a axis.

Crystal data

C12H20NO+·CH3SO3Dx = 1.383 Mg m3
Mr = 289.38Melting point: 445 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2454 reflections
a = 12.9848 (7) Åθ = 3.1–25.0°
b = 11.2625 (6) ŵ = 0.24 mm1
c = 19.0037 (10) ÅT = 120 K
V = 2779.1 (3) Å3Block, colourless
Z = 80.40 × 0.40 × 0.35 mm
F(000) = 1248

Data collection

Kuma KM-4 CCD diffractometer2454 independent reflections
Radiation source: fine-focus sealed tube2000 reflections with I > 2σ(I)
graphiteRint = 0.017
Detector resolution: 0.06 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = −15→14
Absorption correction: multi-scan (Xcalibur; Oxford Diffraction, 2006)k = −13→13
Tmin = 0.824, Tmax = 0.914l = −21→22
19453 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.054P)2 + 1.529P] where P = (Fo2 + 2Fc2)/3
2454 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.09044 (13)0.28700 (14)0.34406 (9)0.0181 (4)
C2−0.00380 (13)0.22857 (15)0.30176 (9)0.0195 (4)
H2A0.06210.26980.31110.023*
H2B0.00380.14450.31620.023*
C3−0.10319 (14)0.41701 (15)0.32215 (9)0.0201 (4)
H3A−0.15940.45410.34960.024*
H3B−0.03880.46130.33170.024*
C4−0.19133 (14)0.22087 (16)0.33012 (9)0.0229 (4)
H4A−0.18460.13700.34510.027*
H4B−0.24770.25760.35760.027*
C5−0.21663 (15)0.22635 (17)0.25177 (10)0.0251 (4)
H5−0.28240.18280.24270.030*
C6−0.13002 (15)0.16913 (16)0.20928 (10)0.0262 (4)
H6A−0.14670.17240.15850.031*
H6B−0.12250.08470.22300.031*
C7−0.02922 (14)0.23530 (16)0.22322 (10)0.0225 (4)
H70.02760.19790.19540.027*
C8−0.04113 (14)0.36523 (15)0.20149 (9)0.0224 (4)
H8A−0.05670.37020.15060.027*
H8B0.02400.40840.21030.027*
C9−0.12838 (13)0.42199 (15)0.24371 (9)0.0213 (4)
H9−0.13620.50680.22910.026*
C10−0.22900 (14)0.35595 (17)0.22953 (10)0.0256 (4)
H10A−0.24610.36030.17880.031*
H10B−0.28580.39320.25640.031*
C110.00322 (13)0.32640 (15)0.45588 (9)0.0211 (4)
C120.01287 (15)0.30548 (18)0.53284 (10)0.0271 (4)
H12A0.07620.26090.54240.041*
H12B−0.04670.25990.54950.041*
H12C0.01550.38190.55750.041*
N1−0.06903 (11)0.27539 (13)0.42026 (8)0.0195 (3)
H1−0.1102 (15)0.2308 (18)0.4446 (11)0.023*
O10.06855 (10)0.39456 (12)0.42407 (6)0.0268 (3)
H20.1158 (17)0.436 (2)0.4560 (12)0.040*
S10.29158 (4)0.49446 (4)0.50332 (2)0.02087 (16)
O20.17962 (12)0.51334 (12)0.50208 (7)0.0302 (3)
O30.31512 (12)0.37147 (12)0.48779 (7)0.0342 (4)
O40.33796 (11)0.54034 (13)0.56618 (7)0.0357 (4)
C130.33885 (17)0.57840 (19)0.43323 (10)0.0356 (5)
H13A0.31910.66170.43960.053*
H13B0.30990.54850.38900.053*
H13C0.41410.57210.43180.053*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0179 (9)0.0183 (8)0.0179 (9)0.0002 (7)0.0006 (7)0.0014 (7)
C20.0182 (9)0.0204 (9)0.0201 (9)0.0034 (7)−0.0005 (7)−0.0017 (7)
C30.0235 (9)0.0163 (8)0.0206 (9)0.0009 (7)0.0028 (7)−0.0011 (7)
C40.0213 (9)0.0212 (9)0.0261 (10)−0.0034 (7)−0.0001 (7)0.0048 (7)
C50.0213 (9)0.0250 (10)0.0289 (10)−0.0074 (8)−0.0056 (7)0.0029 (8)
C60.0341 (11)0.0185 (9)0.0259 (10)−0.0019 (8)−0.0061 (8)−0.0019 (7)
C70.0250 (9)0.0230 (9)0.0195 (9)0.0043 (8)−0.0002 (7)−0.0037 (7)
C80.0238 (9)0.0260 (9)0.0176 (9)−0.0027 (8)−0.0004 (7)0.0002 (7)
C90.0254 (9)0.0150 (8)0.0236 (9)0.0005 (7)−0.0008 (7)0.0027 (7)
C100.0209 (9)0.0281 (10)0.0277 (10)0.0022 (8)−0.0044 (8)0.0042 (8)
C110.0207 (9)0.0209 (9)0.0216 (9)0.0041 (7)0.0029 (7)−0.0015 (7)
C120.0311 (11)0.0299 (10)0.0202 (10)0.0010 (8)−0.0021 (8)0.0001 (8)
N10.0214 (8)0.0187 (7)0.0183 (8)−0.0001 (6)0.0022 (6)0.0015 (6)
O10.0257 (7)0.0330 (7)0.0216 (7)−0.0080 (6)−0.0009 (5)−0.0008 (6)
S10.0221 (3)0.0229 (3)0.0175 (3)−0.00163 (17)−0.00125 (16)0.00108 (17)
O20.0240 (7)0.0328 (8)0.0337 (8)−0.0003 (6)0.0006 (5)−0.0114 (6)
O30.0433 (9)0.0270 (8)0.0323 (8)0.0092 (6)−0.0058 (6)0.0028 (6)
O40.0406 (8)0.0440 (8)0.0226 (7)−0.0109 (7)−0.0093 (6)0.0014 (6)
C130.0489 (13)0.0353 (11)0.0227 (10)−0.0117 (10)0.0030 (9)0.0021 (8)

Geometric parameters (Å, °)

C1—N11.480 (2)C8—H8A0.9900
C1—C41.530 (2)C8—H8B0.9900
C1—C31.531 (2)C9—C101.527 (2)
C1—C21.531 (2)C9—H91.0000
C2—C71.530 (3)C10—H10A0.9900
C2—H2A0.9900C10—H10B0.9900
C2—H2B0.9900C11—N11.292 (2)
C3—C91.527 (2)C11—O11.294 (2)
C3—H3A0.9900C11—C121.487 (3)
C3—H3B0.9900C12—H12A0.9800
C4—C51.526 (3)C12—H12B0.9800
C4—H4A0.9900C12—H12C0.9800
C4—H4B0.9900N1—H10.87 (2)
C5—C61.527 (3)O1—H20.98 (2)
C5—C101.528 (2)S1—O41.4343 (14)
C5—H51.0000S1—O31.4489 (14)
C6—C71.529 (3)S1—O21.4695 (15)
C6—H6A0.9900S1—C131.7448 (19)
C6—H6B0.9900C13—H13A0.9800
C7—C81.528 (2)C13—H13B0.9800
C7—H71.0000C13—H13C0.9800
C8—C91.528 (2)
N1—C1—C4106.69 (13)C7—C8—H8A109.8
N1—C1—C3111.76 (14)C9—C8—H8A109.8
C4—C1—C3109.01 (14)C7—C8—H8B109.8
N1—C1—C2109.73 (14)C9—C8—H8B109.8
C4—C1—C2109.20 (14)H8A—C8—H8B108.2
C3—C1—C2110.34 (14)C3—C9—C10109.73 (14)
C7—C2—C1109.40 (14)C3—C9—C8109.77 (14)
C7—C2—H2A109.8C10—C9—C8109.74 (14)
C1—C2—H2A109.8C3—C9—H9109.2
C7—C2—H2B109.8C10—C9—H9109.2
C1—C2—H2B109.8C8—C9—H9109.2
H2A—C2—H2B108.2C9—C10—C5109.05 (14)
C9—C3—C1108.89 (14)C9—C10—H10A109.9
C9—C3—H3A109.9C5—C10—H10A109.9
C1—C3—H3A109.9C9—C10—H10B109.9
C9—C3—H3B109.9C5—C10—H10B109.9
C1—C3—H3B109.9H10A—C10—H10B108.3
H3A—C3—H3B108.3N1—C11—O1119.67 (16)
C5—C4—C1109.48 (14)N1—C11—C12120.42 (16)
C5—C4—H4A109.8O1—C11—C12119.90 (16)
C1—C4—H4A109.8C11—C12—H12A109.5
C5—C4—H4B109.8C11—C12—H12B109.5
C1—C4—H4B109.8H12A—C12—H12B109.5
H4A—C4—H4B108.2C11—C12—H12C109.5
C4—C5—C6109.89 (15)H12A—C12—H12C109.5
C4—C5—C10109.34 (15)H12B—C12—H12C109.5
C6—C5—C10109.53 (15)C11—N1—C1127.58 (15)
C4—C5—H5109.4C11—N1—H1115.2 (14)
C6—C5—H5109.4C1—N1—H1117.2 (14)
C10—C5—H5109.4C11—O1—H2113.8 (13)
C5—C6—C7109.45 (14)O4—S1—O3115.18 (9)
C5—C6—H6A109.8O4—S1—O2112.12 (8)
C7—C6—H6A109.8O3—S1—O2110.11 (8)
C5—C6—H6B109.8O4—S1—C13107.03 (9)
C7—C6—H6B109.8O3—S1—C13106.76 (9)
H6A—C6—H6B108.2O2—S1—C13104.92 (10)
C8—C7—C6109.47 (15)S1—C13—H13A109.5
C8—C7—C2109.44 (14)S1—C13—H13B109.5
C6—C7—C2109.23 (15)H13A—C13—H13B109.5
C8—C7—H7109.6S1—C13—H13C109.5
C6—C7—H7109.6H13A—C13—H13C109.5
C2—C7—H7109.6H13B—C13—H13C109.5
C7—C8—C9109.49 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.87 (2)1.98 (2)2.838 (2)170.1 (19)
O1—H2···O20.98 (2)1.49 (2)2.4632 (18)173 (2)

Symmetry codes: (i) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2161).

References

  • Aldrich, P. E., Hermann, E. C., Meier, E. E., Paulshock, M., Richard, W. W., Snyder, J. A. & Watts, J. C. (1971). J. Med. Chem.14, 535–543. [PubMed]
  • Bach, R. D., Holubka, J. W. & Taaffee, T. A. (1979). J. Org. Chem.44, 1739–1740.
  • Bach, R. D., Taaffee, T. A. & Rajan, S. J. (1980). J. Org. Chem.45, 165–167.
  • Davies, W. L., Grubery, R. R., Haff, R. F., McGahen, J. W., Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T. R., Hermann, E. C. & Hoffmann, C. E. (1964). Science, 144, 862–863. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gerzon, K., Krumalns, E. V., Brindle, R. L., Marshall, F. J. & Root, M. A. (1963). J. Med. Chem.6, 760–763. [PubMed]
  • Kashino, S., Tateno, S., Hamada, N. & Haisa, M. (1998). Acta Cryst. C54, 273–274.
  • Mizoguchi, J., Takayuki, M. & Kashino, S. (1997). Acta Cryst. C53 IUC9700024.
  • Oxford Diffraction (2006). Xcalibur CCD System Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Pröhl, H.-H., Blaschette, A. & Jones, P. G. (1997). Acta Cryst. C53, 1434–1436.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stetter, H., Mayer, J., Schwarz, M. & Wulff, K. (1960). Chem. Ber.93, 226–230.
  • Stetter, H., Schwarz, M. & Hirschhorn, A. (1959). Chem. Ber.92, 1629–1635.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography