PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1376.
Published online 2009 May 23. doi:  10.1107/S1600536809018650
PMCID: PMC2969593

1,4-Bis(methyl­sulfan­yl)naphthalene

Abstract

The mol­ecule of the title compound, C12H12S2, is close to planar, with the methyl C atoms deviating by 0.019 (1) and 0.221 (2) Å from the naphthalene mean plane. In the crystal structure, the shortest S(...)S contact of 3.6864 (9) Å is longer than the van der Waals contact distance.

Related literature

For general background, see: Underhill (1992 [triangle]); Öncü et al. (2006 [triangle]). For related structures, see: Noreland et al. (1992 [triangle], 1993 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For van der Waals radii, see: Bondi (1964 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1376-scheme1.jpg

Experimental

Crystal data

  • C12H12S2
  • M r = 220.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1376-efi1.jpg
  • a = 15.203 (3) Å
  • b = 10.246 (2) Å
  • c = 7.1750 (14) Å
  • β = 99.43 (3)°
  • V = 1102.6 (4) Å3
  • Z = 4
  • Synchrotron radiation
  • λ = 0.75140 Å
  • μ = 0.44 mm−1
  • T = 153 K
  • 0.11 × 0.08 × 0.02 mm

Data collection

  • Bruker P4 diffractometer
  • Absorption correction: part of the refinement model (ΔF) (XABS2; Parkin et al., 1995 [triangle]) T min = 0.832, T max = 0.991
  • 5197 measured reflections
  • 3013 independent reflections
  • 2619 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.109
  • S = 1.07
  • 3013 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: XSCANS (Bruker, 1996 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: direct methods using SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809018650/hb2962sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018650/hb2962Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SGG gratefully acknowledges financial support from the MEC, projects MAT2006-01997 and Consolider Ingenio-2010, ‘Factoría Española de Cristalización’, for the latter of which beam time provided by BM16 (ESRF) under proposal 16-01-706 is gratefully acknowledged.

supplementary crystallographic information

Comment

Molecular electronics have attracted considerable attention because they are used for production electronic switches, memory cells or sensors. The most extensive range of the set compounds is based on planar organic donor molecules containing S or Se atoms (e.g. Underhill, 1992; Noreland et al., 1992; Noreland et al., 1993; Öncü et al., 2006. In this study, the synthesis and structure of the title compound, (I), are reported.

As shown in Fig. 1, the naphthalene group (C1–C10) of the title molecule (I) is essentially planar, with maximum deviations of -0.014 (1), -0.014 (1) and 0.018 (1) Å for C4, C8 and C6, respectively. Deviations from planarity in the title molecule which were calculated to the least-squares plane of the naphthalene group are: 0.014 (1) Å for S1, 0.112 (1) Å for S2, -0.221 (2) Å for C11 and -0.019 (1) Å for C12. The bond lengths and angles in (I) show normal values (Allen et al., 1987). The molecular packing of (I) as seen down the a axis is illustrated in Fig. 2. There is only one S···S contact near the van der Waals contact distance, 3.6 Å (Bondi, 1964): S2···S2i 3.6864 (9) Å [symmetry code: (i) -x + 1, -y, -z].

Experimental

The complete reaction was carried out under nitrogen atmosphere and 195 K. t-BuLi (10 ml, 14 mmol) solution was added to 1,4-dibromonaphthalene (1 g, 3.5 mmol) solved in dry THF (12 ml) with continuous stirring. Meanwhile, red colour was observed because of LiBr formation. Later, to the resulting reaction mixture was added dropwise (CH3S)2 (1.24 ml, 14 mmol). After 1 h, the reaction was ended. Reaction mixture warming to room temperature was extracted with Et2O (3 × 25 ml). The extract was dried over Na2SO4 and concentrated. 1,4-Bis(methylthio)naphthalene as white needle-like crystals was obtained by crystallization from crude product solved in dichloromethane:hexan (1:19) system (708 mg, 92%), m.p. 369–371 K (lit. 370–371 K).

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and 0.9 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
View of the molecular packing diagram of compound (I) viewed down b axis. H atoms have been omitted for clarity.

Crystal data

C12H12S2F(000) = 464
Mr = 220.34Dx = 1.327 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.75140 Å
Hall symbol: -P 2ybcCell parameters from 40396 reflections
a = 15.203 (3) Åθ = 1.0–27.0°
b = 10.246 (2) ŵ = 0.44 mm1
c = 7.1750 (14) ÅT = 153 K
β = 99.43 (3)°Prism, colourless
V = 1102.6 (4) Å30.11 × 0.08 × 0.02 mm
Z = 4

Data collection

Bruker P4 diffractometer3013 independent reflections
Radiation source: sealed tube2619 reflections with I > 2σ(I)
graphiteRint = 0.019
ω scansθmax = 33.8°, θmin = 2.6°
Absorption correction: part of the refinement model (ΔF) (XABS2; Parkin et al., 1995)h = −20→20
Tmin = 0.832, Tmax = 0.991k = −14→14
5197 measured reflectionsl = −9→0

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.07w = 1/[Σ2(Fo2) + (0.0553P)2 + 0.1466P] where P = (Fo2 + 2Fc2)/3
3013 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Experimental. Cubic fit to sin(theta)/lambda - 24 parameters
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.90863 (2)−0.04680 (4)0.76728 (6)0.0671 (2)
S20.53023 (2)−0.06992 (3)0.23860 (5)0.0558 (1)
C10.85913 (9)0.07840 (13)0.3828 (2)0.0578 (4)
C20.84525 (11)0.14096 (16)0.2131 (2)0.0700 (5)
C30.76299 (11)0.13355 (17)0.0952 (2)0.0714 (5)
C40.69472 (10)0.06351 (14)0.1496 (2)0.0592 (4)
C50.70573 (8)−0.00085 (11)0.32680 (17)0.0468 (3)
C60.63478 (8)−0.07293 (11)0.38797 (18)0.0469 (3)
C70.65018 (9)−0.13631 (14)0.55763 (19)0.0562 (4)
C80.73388 (9)−0.13004 (14)0.67599 (19)0.0585 (4)
C90.80296 (8)−0.05983 (12)0.62517 (19)0.0511 (4)
C100.79008 (8)0.00626 (11)0.44685 (18)0.0478 (3)
C110.90238 (12)−0.15800 (18)0.9562 (3)0.0818 (6)
C120.46292 (9)−0.17829 (14)0.3515 (2)0.0625 (4)
H10.914900.083000.458300.0690*
H20.891200.189100.175600.0840*
H30.754400.17620−0.020700.0860*
H40.640300.058100.069100.0710*
H70.60450−0.184600.596000.0670*
H80.74230−0.174400.790600.0700*
H11A0.95780−0.157201.042400.1230*
H11B0.89100−0.244400.906200.1230*
H11C0.85490−0.132201.021700.1230*
H12A0.40410−0.182700.278700.0940*
H12B0.45940−0.146500.476000.0940*
H12C0.48920−0.263700.360400.0940*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0534 (2)0.0744 (3)0.0682 (3)−0.0142 (2)−0.0060 (2)0.0043 (2)
S20.0519 (2)0.0567 (2)0.0553 (2)−0.0028 (1)−0.0020 (1)0.0051 (1)
C10.0503 (7)0.0558 (7)0.0691 (8)−0.0030 (5)0.0149 (6)0.0008 (6)
C20.0643 (8)0.0693 (9)0.0818 (10)−0.0055 (7)0.0280 (7)0.0134 (7)
C30.0707 (9)0.0773 (10)0.0696 (9)0.0035 (7)0.0212 (7)0.0236 (8)
C40.0578 (7)0.0612 (7)0.0593 (8)0.0062 (5)0.0117 (6)0.0111 (6)
C50.0494 (6)0.0417 (5)0.0504 (6)0.0037 (4)0.0116 (4)0.0001 (4)
C60.0453 (6)0.0447 (5)0.0497 (6)0.0001 (4)0.0047 (4)−0.0012 (4)
C70.0490 (6)0.0610 (7)0.0571 (7)−0.0094 (5)0.0043 (5)0.0098 (6)
C80.0540 (7)0.0660 (8)0.0528 (7)−0.0088 (6)0.0007 (5)0.0117 (6)
C90.0473 (6)0.0505 (6)0.0537 (7)−0.0036 (5)0.0031 (5)−0.0019 (5)
C100.0484 (6)0.0411 (5)0.0550 (6)0.0002 (4)0.0115 (5)−0.0026 (5)
C110.0770 (10)0.0848 (11)0.0728 (10)−0.0151 (9)−0.0198 (8)0.0164 (8)
C120.0536 (7)0.0643 (8)0.0667 (8)−0.0097 (6)0.0017 (6)0.0023 (6)

Geometric parameters (Å, °)

S1—C91.7611 (14)C9—C101.4324 (18)
S1—C111.785 (2)C1—H10.9300
S2—C61.7657 (13)C2—H20.9300
S2—C121.7911 (15)C3—H30.9300
C1—C21.362 (2)C4—H40.9300
C1—C101.4204 (19)C7—H70.9300
C2—C31.392 (2)C8—H80.9300
C3—C41.370 (2)C11—H11A0.9600
C4—C51.4176 (19)C11—H11B0.9600
C5—C61.4341 (17)C11—H11C0.9600
C5—C101.4247 (18)C12—H12A0.9600
C6—C71.3656 (19)C12—H12B0.9600
C7—C81.411 (2)C12—H12C0.9600
C8—C91.3707 (19)
S2···S2i3.6864 (9)
C9—S1—C11103.55 (8)C1—C2—H2120.00
C6—S2—C12103.82 (7)C3—C2—H2120.00
C2—C1—C10121.32 (14)C2—C3—H3120.00
C1—C2—C3120.65 (15)C4—C3—H3120.00
C2—C3—C4120.16 (14)C3—C4—H4120.00
C3—C4—C5121.03 (14)C5—C4—H4119.00
C4—C5—C6121.99 (12)C6—C7—H7119.00
C4—C5—C10118.74 (12)C8—C7—H7119.00
C6—C5—C10119.27 (11)C7—C8—H8119.00
S2—C6—C5116.91 (10)C9—C8—H8119.00
S2—C6—C7123.72 (10)S1—C11—H11A109.00
C5—C6—C7119.34 (12)S1—C11—H11B109.00
C6—C7—C8121.39 (13)S1—C11—H11C109.00
C7—C8—C9121.24 (13)H11A—C11—H11B110.00
S1—C9—C8123.49 (11)H11A—C11—H11C109.00
S1—C9—C10117.36 (10)H11B—C11—H11C109.00
C8—C9—C10119.15 (12)S2—C12—H12A109.00
C1—C10—C5118.08 (12)S2—C12—H12B109.00
C1—C10—C9122.34 (12)S2—C12—H12C109.00
C5—C10—C9119.58 (11)H12A—C12—H12B109.00
C2—C1—H1119.00H12A—C12—H12C109.00
C10—C1—H1119.00H12B—C12—H12C109.00
C11—S1—C9—C87.08 (14)C10—C5—C6—C7−1.81 (18)
C11—S1—C9—C10−172.38 (11)C4—C5—C10—C10.28 (18)
C12—S2—C6—C5175.91 (10)C4—C5—C10—C9−179.02 (12)
C12—S2—C6—C7−5.94 (13)C6—C5—C10—C1−179.94 (12)
C10—C1—C2—C3−1.4 (2)C6—C5—C10—C90.76 (17)
C2—C1—C10—C51.0 (2)S2—C6—C7—C8−176.70 (11)
C2—C1—C10—C9−179.70 (14)C5—C6—C7—C81.4 (2)
C1—C2—C3—C40.4 (2)C6—C7—C8—C90.1 (2)
C2—C3—C4—C50.9 (2)C7—C8—C9—S1179.38 (11)
C3—C4—C5—C6178.97 (14)C7—C8—C9—C10−1.2 (2)
C3—C4—C5—C10−1.3 (2)S1—C9—C10—C10.93 (17)
C4—C5—C6—S2−3.80 (16)S1—C9—C10—C5−179.80 (10)
C4—C5—C6—C7177.96 (13)C8—C9—C10—C1−178.56 (13)
C10—C5—C6—S2176.43 (9)C8—C9—C10—C50.71 (18)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···S10.932.603.0235 (16)108
C4—H4···S20.932.583.0090 (17)108

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2962).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bondi, A. (1964). J. Phys. Chem 68, 441–451.
  • Bruker (1996). XSCANS Bruker AXS Inc., Karlsruhe, Germany.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Noreland, J., Olovsson, G. & Olovsson, I. (1992). Acta Cryst. C48, 1459–1462.
  • Noreland, J., Olovsson, G. & Olovsson, I. (1993). Acta Cryst. C49, 168–171.
  • Öncü, A., Büyükkıdan, N. S., Büyükkıdan, B. & Çakmak, O. (2006). Turk. J. Chem.30, 235–241.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst.28, 53–56.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Underhill, A. E. (1992). J. Mater. Chem.2, 1-11.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography