PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1278.
Published online 2009 May 14. doi:  10.1107/S1600536809016626
PMCID: PMC2969592

1,3-Dihydr­oxy-2-(hydroxy­meth­yl)propan-2-aminium 2,2-dichloro­acetate

Abstract

The title compound, C4H12NO3 +·C2HCl2O2 , was obtained from dichloro­acetic acid and 2-amino-2-(hydroxy­meth­yl)propane-1,3-diol. In the crystal structure, the cations and anions are connected by inter­molecular N—H(...)O and O—H(...)O hydrogen bonding, forming a two-dimensional array parallel to (001). The crystal used for analysis was a merohedral twin, as indicated by the Flack parameter of 0.67 (6).

Related literature

For the engineering of organic crystals for quadratic non-linear optics, see: Etter & Frankenbach (1989 [triangle]); Yaghi et al. (1997 [triangle]). For hydrogen-bond networks, see: Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1278-scheme1.jpg

Experimental

Crystal data

  • C4H12NO3 +·C2HCl2O2
  • M r = 250.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1278-efi2.jpg
  • a = 8.6231 (17) Å
  • b = 6.1376 (12) Å
  • c = 9.898 (2) Å
  • β = 97.03 (3)°
  • V = 519.92 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.62 mm−1
  • T = 293 K
  • 0.22 × 0.18 × 0.12 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.875, T max = 0.929
  • 4914 measured reflections
  • 2044 independent reflections
  • 1951 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.069
  • S = 1.10
  • 2044 reflections
  • 130 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.25 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 920 Friedel pairs
  • Flack parameter: 0.67 (6)

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016626/dn2442sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016626/dn2442Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

During the past 15 years, organic crystals for quadratic nonlinear optics have been intensely engineered (Etter & Frankenbach, 1989; Yaghi et al., 1997). Arising from the complexation of organic and inorganic molecules based on acid–base interactions, highly polarisable cations, responsible for NLO properties, are linked to inorganic anions through hydrogen bond networks which generate a noncentrosymmetric structural organization (Etter, 1990). In this paper, a novel nonlinear hybrid molecular crystal, NH2C(CH2OH)3, has been prepared by complexation between dichloroacetic and tris(hydroxymethyl)amino methane.

The structure is built up from cations and anions (Fig. 1) connected through strong intermolecular hydrogen bonds (Table 1, Fig. 2) to form a two-dimensional layer developing parallel to the (001) plane. As suggested by the value of the Flack parameter (Flack, 1983), 0.67 (6), based on 920 Friedel's pairs, the particular crystal is twinned by inversion.

Experimental

The crystals were grown by slow evaporation at ambient temperature of the solution prepared by adding dichloroacetic acid to the aqueous solution of tris(hydroxymethyl)aminomethane in a stoichiometric ratio. For the X-ray diffraction analysis, suitable single crystals of compound (I) were obtained after one night by slow evaporation from an filtration water solution.

Refinement

All H atoms were found from a difference Fourier map but they were treated as riding on their parent atoms with C—H = 0.97 Å (methylene) or 0.98 Å (methine), N—H = 0.89 Å and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N,O).

Figures

Fig. 1.
The molecular structure of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. H bond is drawn as dashed line.
Fig. 2.
Partial packing view showing the intricated hydrogen bond framework. H atoms not involved in hydrogen bondings were omitted. [Symmetry code: (i) -x + 1, y + 1/2, -z + 1.]

Crystal data

C4H12NO3+·C2HCl2O2F(000) = 260
Mr = 250.07Dx = 1.597 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 735 reflections
a = 8.6231 (17) Åθ = 2.8–27.5°
b = 6.1376 (12) ŵ = 0.62 mm1
c = 9.898 (2) ÅT = 293 K
β = 97.03 (3)°Prism, colourless
V = 519.92 (18) Å30.22 × 0.18 × 0.12 mm
Z = 2

Data collection

Rigaku SCXmini diffractometer2044 independent reflections
Radiation source: fine-focus sealed tube1951 reflections with I > 2σ(I)
graphiteRint = 0.025
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = −10→10
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −7→7
Tmin = 0.875, Tmax = 0.929l = −12→12
4914 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.069w = 1/[σ2(Fo2) + (0.0218P)2 + 0.166P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2044 reflectionsΔρmax = 0.23 e Å3
130 parametersΔρmin = −0.25 e Å3
3 restraintsAbsolute structure: Flack (1983), 920 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.67 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.86491 (9)0.39154 (15)0.00483 (7)0.0630 (2)
Cl20.70850 (10)0.03942 (11)0.13016 (8)0.0598 (2)
C10.6938 (3)0.3135 (4)0.0737 (2)0.0342 (5)
H10.60460.32630.00260.041*
C20.6675 (2)0.4656 (4)0.1919 (2)0.0282 (5)
C30.2265 (2)0.2569 (3)0.3756 (2)0.0215 (4)
C40.3748 (2)0.1471 (3)0.3394 (2)0.0248 (4)
H4A0.35400.08270.24960.030*
H4B0.45580.25620.33650.030*
C50.0883 (2)0.0986 (3)0.3577 (2)0.0249 (4)
H5A0.05430.08010.26130.030*
H5B0.1226−0.04230.39440.030*
C60.1911 (2)0.4607 (3)0.2892 (2)0.0270 (4)
H6A0.18410.42150.19370.032*
H6B0.09050.51880.30580.032*
N10.25465 (19)0.3243 (3)0.52217 (16)0.0221 (3)
H1A0.34700.39030.53820.033*
H1B0.25400.20700.57500.033*
H1C0.17970.41560.54030.033*
O10.54454 (19)0.5709 (3)0.17435 (18)0.0444 (4)
O20.76863 (19)0.4708 (3)0.29336 (16)0.0403 (4)
O30.42905 (16)−0.0160 (2)0.43407 (15)0.0306 (4)
H30.3857−0.12810.40710.046*
O40.30642 (17)0.6233 (2)0.31776 (17)0.0336 (4)
H40.38050.59590.27590.050*
O5−0.04042 (15)0.1704 (3)0.42311 (15)0.0274 (3)
H5−0.09310.25640.37350.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0535 (4)0.0984 (7)0.0405 (4)−0.0075 (4)0.0196 (3)−0.0042 (4)
Cl20.0872 (5)0.0321 (3)0.0549 (4)−0.0001 (4)−0.0123 (4)−0.0081 (3)
C10.0339 (12)0.0377 (13)0.0292 (11)0.0008 (10)−0.0040 (9)−0.0007 (10)
C20.0274 (11)0.0271 (10)0.0304 (11)−0.0002 (10)0.0048 (9)0.0064 (9)
C30.0185 (9)0.0225 (10)0.0233 (10)−0.0014 (8)0.0018 (8)0.0011 (8)
C40.0213 (10)0.0248 (11)0.0288 (11)0.0005 (9)0.0052 (9)0.0000 (9)
C50.0191 (9)0.0233 (11)0.0324 (11)−0.0007 (8)0.0029 (8)−0.0030 (9)
C60.0247 (10)0.0227 (10)0.0332 (11)0.0007 (9)0.0017 (9)0.0044 (9)
N10.0180 (7)0.0224 (8)0.0259 (9)0.0000 (7)0.0031 (7)−0.0006 (7)
O10.0347 (9)0.0503 (11)0.0494 (10)0.0142 (8)0.0097 (8)0.0129 (9)
O20.0424 (9)0.0425 (10)0.0337 (9)0.0120 (8)−0.0048 (7)−0.0105 (7)
O30.0238 (7)0.0236 (8)0.0433 (9)0.0036 (6)−0.0002 (7)0.0001 (7)
O40.0293 (8)0.0219 (7)0.0510 (10)−0.0038 (6)0.0105 (7)0.0024 (7)
O50.0179 (7)0.0308 (8)0.0337 (8)−0.0002 (6)0.0043 (6)0.0027 (6)

Geometric parameters (Å, °)

Cl1—C11.765 (2)C5—O51.421 (2)
Cl2—C11.773 (3)C5—H5A0.9700
C1—C21.536 (3)C5—H5B0.9700
C1—H10.9800C6—O41.413 (3)
C2—O11.236 (3)C6—H6A0.9700
C2—O21.247 (3)C6—H6B0.9700
C3—N11.499 (3)N1—H1A0.8900
C3—C61.525 (3)N1—H1B0.8900
C3—C41.527 (3)N1—H1C0.8900
C3—C51.531 (3)O3—H30.8119
C4—O31.411 (2)O4—H40.8205
C4—H4A0.9700O5—H50.8200
C4—H4B0.9700
C2—C1—Cl1109.75 (16)O5—C5—C3112.99 (16)
C2—C1—Cl2110.36 (16)O5—C5—H5A109.0
Cl1—C1—Cl2110.39 (14)C3—C5—H5A109.0
C2—C1—H1108.8O5—C5—H5B109.0
Cl1—C1—H1108.8C3—C5—H5B109.0
Cl2—C1—H1108.8H5A—C5—H5B107.8
O1—C2—O2127.1 (2)O4—C6—C3112.27 (17)
O1—C2—C1114.5 (2)O4—C6—H6A109.2
O2—C2—C1118.38 (19)C3—C6—H6A109.2
N1—C3—C6108.33 (17)O4—C6—H6B109.2
N1—C3—C4107.93 (16)C3—C6—H6B109.2
C6—C3—C4110.28 (16)H6A—C6—H6B107.9
N1—C3—C5108.57 (16)C3—N1—H1A109.5
C6—C3—C5110.83 (16)C3—N1—H1B109.5
C4—C3—C5110.81 (17)H1A—N1—H1B109.5
O3—C4—C3112.12 (16)C3—N1—H1C109.5
O3—C4—H4A109.2H1A—N1—H1C109.5
C3—C4—H4A109.2H1B—N1—H1C109.5
O3—C4—H4B109.2C4—O3—H3106.3
C3—C4—H4B109.2C6—O4—H4109.1
H4A—C4—H4B107.9C5—O5—H5109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.892.002.881 (2)169
N1—H1B···O2ii0.891.972.858 (2)172
N1—H1C···O5iii0.892.032.909 (2)169
O3—H3···O4iv0.811.852.654 (2)169
O4—H4···O10.821.842.655 (2)173
O5—H5···O2v0.821.882.691 (2)168

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+1, y−1/2, −z+1; (iii) −x, y+1/2, −z+1; (iv) x, y−1, z; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2442).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Etter, M. C. & Frankenbach, G. M. (1989). Chem. Mater.1, 10–12.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yaghi, O. M., Davis, C. E., Li, G.-M. & Li, H.-L. (1997). J. Am. Chem. Soc.119, 2861–2868.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography