PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1233–o1234.
Published online 2009 May 7. doi:  10.1107/S1600536809015487
PMCID: PMC2969589

4-tert-Butyl­amino-3-nitro­benzoic acid

Abstract

In the title compound, C11H14N2O4, all non-H atoms lie in a mirror plane except for one of the methyl groups which deviates from the mirror plane by 0.919 (3) Å and is twisted by a torsion angle of 62.9 (2)°. An intra­molecular N—H(...)O hydrogen bond generates an S(6) ring motif. In the crystal packing, the mol­ecules are linked together by O—H(...)O hydrogen bonds, forming dimers with graph-set motif R 2 2(8) which propagate along the a-axis direction. C—H(...)O contacts link adjacent dimers with a graph-set motif C 2 2(7), forming chains along b, and further consolidate the structure into a three-dimensional network. The crystal packing is further strengthened by short inter­molecular O(...)O=C [2.655 (4) Å] contacts.

Related literature

Nitro benzoic acid derivatives are important inter­mediates for the synthesis of various heterocyclic compounds of pharmacological inter­est, see: Brouillette et al. (1999 [triangle]); Williams et al. (1995 [triangle]). For the structure of 4-(tert-butyl­amino)-3-nitro­benzoate, see: Mohd Maidin et al. (2008 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1233-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O4
  • M r = 238.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1233-efi1.jpg
  • a = 20.8125 (15) Å
  • b = 6.7412 (5) Å
  • c = 8.0793 (5) Å
  • β = 90.863 (6)°
  • V = 1133.41 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 100 K
  • 0.39 × 0.10 × 0.03 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.959, T max = 0.997
  • 6267 measured reflections
  • 1418 independent reflections
  • 985 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.153
  • S = 1.11
  • 1418 reflections
  • 107 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809015487/tk2439sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015487/tk2439Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SNNB, ASAR and SAH are grateful to Universiti Sains Malaysia (USM) for funding the synthetic chemistry work under the University Research Grant (1001/PFARMASI/815026). SNNB thanks USM for a post–doctoral research fellowship. HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Nitro benzoic acid derivatives are important intermediates for the synthesis of various heterocyclic compounds of pharmacological interest (Brouillette et al., 1999; Williams et al., 1995). As a part of our ongoing study on such compounds, in this paper, we present the crystal structure of the title compound (I) which was synthesized as an intermediate.

In the asymmetric unit of (I), all non-hydrogen atoms lie in a mirror plane except the methyl-C9A moiety, which is deviated from the mean plane by 0.919 (3) Å and twisted by a torsion angle C6–N2–C7–C9 of 62.9 (2) Å.

An intramolecular N—H···O hydrogen bond generates a ring of motif S(6) (Bernstein et al., 1995) (Fig. 1). In the crystal packing, the molecules are linked together by O—H···O hydrogen bonds to form dimers with the graph set motif R22(8) which propagate along the a-direction (Table 1). C—H···O contacts link adjacent dimers with a graph set motif C22(7) (Fig. 2) to form chains along the b-direction and further consolidate the structure into a 3D network. The crystal packing is further strengthened by short intermolecular O···Oi-ii = 2.655 (4)Å contacts; symmetry code: (i) 1-x, y, 1-z; (ii) 1-x, 1-y, 1-z.

Experimental

Compound (I) was prepared by refluxing ethyl 4-(tert-butylamino)-3-nitrobenzoate (0.7 g, 0.0026 mol) (Mohd Maidin et al., 2008) and KOH (0.14 g, 0.0026 mol) in aqueous ethanol (10 ml) for 3 h. Ethanol was then removed in vacuo and the reaction mixture was diluted with water (15 ml). The aqueous layer was washed with dichloromethane (10 ml × 2) and acidified with concentrated hydrochloric acid to bring about the precipitation of the desired benzoic acid. Recrystallization of the precipitate with hot ethyl acetate afforded yellow crystals of the title compound (I).

Refinement

H atoms were positioned geometrically [C–H = 0.93–0.96 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. The O- and N-bound hydrogen atoms were located from the Fourier map and allowed to refine freely.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. Intramolecular hydrogen bonding is shown as a dashed line. [Symmetry code used to generate methyl moiety C9A: x, -y + 1, z]
Fig. 2.
The crystal packing of (I), viewed along the c axis. Dashed lines indicate the hydrogen bonding and C—H···O contacts.

Crystal data

C11H14N2O4F(000) = 504
Mr = 238.24Dx = 1.396 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 1829 reflections
a = 20.8125 (15) Åθ = 3.2–30.6°
b = 6.7412 (5) ŵ = 0.11 mm1
c = 8.0793 (5) ÅT = 100 K
β = 90.863 (6)°Plate, yellow
V = 1133.41 (14) Å30.39 × 0.10 × 0.03 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer1418 independent reflections
Radiation source: fine-focus sealed tube985 reflections with I > 2σ(I)
graphiteRint = 0.057
[var phi] and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −26→26
Tmin = 0.959, Tmax = 0.997k = −8→8
6267 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.11w = 1/[σ2(Fo2) + (0.058P)2 + 2.3728P] where P = (Fo2 + 2Fc2)/3
1418 reflections(Δ/σ)max < 0.001
107 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.44372 (12)0.50000.3166 (3)0.0189 (6)
O20.43314 (11)0.50000.5919 (3)0.0185 (6)
O30.22447 (11)0.50000.8193 (3)0.0198 (6)
O40.13560 (11)0.50000.6766 (3)0.0187 (6)
N10.19540 (13)0.50000.6848 (3)0.0130 (6)
N20.13842 (13)0.50000.3497 (4)0.0131 (6)
C10.24626 (16)0.50000.2381 (4)0.0142 (7)
H1A0.22980.50000.13040.017*
C20.31116 (16)0.50000.2615 (4)0.0145 (7)
H2A0.33770.50000.17000.017*
C30.33894 (15)0.50000.4217 (4)0.0122 (7)
C40.29869 (16)0.50000.5563 (4)0.0126 (7)
H4A0.31630.50000.66280.015*
C50.23216 (16)0.50000.5349 (4)0.0130 (7)
C60.20244 (16)0.50000.3726 (4)0.0129 (7)
C70.09935 (16)0.50000.1929 (4)0.0145 (7)
C80.02967 (16)0.50000.2518 (4)0.0184 (8)
H8B0.00080.50000.15810.028*
H8C0.02280.38610.32060.028*
C90.11138 (11)0.3105 (4)0.0926 (3)0.0169 (6)
H9A0.15580.30440.06270.025*
H9B0.08500.3120−0.00600.025*
H9C0.10080.19660.15810.025*
C100.40933 (15)0.50000.4522 (4)0.0132 (7)
H1N20.1189 (18)0.50000.435 (5)0.015 (10)*
H1O10.4804 (19)0.50000.341 (5)0.010 (10)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0086 (13)0.0327 (15)0.0154 (14)0.0000.0005 (10)0.000
O20.0121 (12)0.0293 (14)0.0142 (13)0.0000.0012 (10)0.000
O30.0207 (13)0.0282 (14)0.0104 (12)0.0000.0002 (10)0.000
O40.0130 (13)0.0279 (14)0.0153 (13)0.0000.0045 (10)0.000
N10.0154 (15)0.0119 (14)0.0117 (15)0.0000.0033 (11)0.000
N20.0113 (15)0.0189 (15)0.0092 (15)0.0000.0029 (12)0.000
C10.0197 (18)0.0147 (17)0.0082 (17)0.000−0.0002 (14)0.000
C20.0176 (18)0.0131 (16)0.0129 (18)0.0000.0074 (14)0.000
C30.0155 (17)0.0082 (15)0.0128 (17)0.0000.0004 (13)0.000
C40.0172 (17)0.0109 (16)0.0096 (17)0.000−0.0014 (13)0.000
C50.0178 (18)0.0085 (15)0.0126 (17)0.0000.0016 (13)0.000
C60.0166 (17)0.0088 (15)0.0134 (17)0.0000.0003 (14)0.000
C70.0132 (17)0.0158 (17)0.0142 (17)0.000−0.0026 (13)0.000
C80.0173 (18)0.0215 (18)0.0164 (18)0.000−0.0021 (14)0.000
C90.0184 (12)0.0163 (12)0.0160 (12)−0.0014 (10)−0.0014 (10)0.0003 (10)
C100.0134 (17)0.0093 (16)0.0170 (18)0.0000.0027 (14)0.000

Geometric parameters (Å, °)

O1—C101.318 (4)C3—C41.383 (5)
O1—H1O10.79 (4)C3—C101.482 (5)
O2—C101.226 (4)C4—C51.393 (5)
O3—N11.236 (4)C4—H4A0.9300
O4—N11.245 (4)C5—C61.441 (5)
N1—C51.442 (4)C7—C81.533 (5)
N2—C61.343 (4)C7—C91.536 (3)
N2—C71.495 (4)C7—C9i1.536 (3)
N2—H1N20.80 (4)C8—H8B0.9595
C1—C21.361 (5)C8—H8C0.9600
C1—C61.429 (5)C9—H9A0.9600
C1—H1A0.9300C9—H9B0.9600
C2—C31.409 (5)C9—H9C0.9600
C2—H2A0.9300
C10—O1—H1O1109 (3)N2—C6—C1122.6 (3)
O3—N1—O4121.5 (3)N2—C6—C5122.5 (3)
O3—N1—C5118.6 (3)C1—C6—C5114.9 (3)
O4—N1—C5119.9 (3)N2—C7—C8104.0 (3)
C6—N2—C7130.0 (3)N2—C7—C9110.88 (17)
C6—N2—H1N2113 (3)C8—C7—C9109.04 (18)
C7—N2—H1N2117 (3)N2—C7—C9i110.88 (17)
C2—C1—C6122.5 (3)C8—C7—C9i109.04 (18)
C2—C1—H1A118.7C9—C7—C9i112.6 (3)
C6—C1—H1A118.7C7—C8—H8B109.9
C1—C2—C3121.4 (3)C7—C8—H8C109.3
C1—C2—H2A119.3H8B—C8—H8C111.1
C3—C2—H2A119.3C7—C9—H9A109.5
C4—C3—C2118.5 (3)C7—C9—H9B109.5
C4—C3—C10118.5 (3)H9A—C9—H9B109.5
C2—C3—C10122.9 (3)C7—C9—H9C109.5
C3—C4—C5121.0 (3)H9A—C9—H9C109.5
C3—C4—H4A119.5H9B—C9—H9C109.5
C5—C4—H4A119.5O2—C10—O1123.3 (3)
C4—C5—C6121.7 (3)O2—C10—C3122.6 (3)
C4—C5—N1115.8 (3)O1—C10—C3114.2 (3)
C6—C5—N1122.5 (3)
C6—C1—C2—C30.0C2—C1—C6—N2180.0
C1—C2—C3—C40.0C2—C1—C6—C50.0
C1—C2—C3—C10180.0C4—C5—C6—N2180.0
C2—C3—C4—C50.0N1—C5—C6—N20.0
C10—C3—C4—C5180.0C4—C5—C6—C10.0
C3—C4—C5—C60.0N1—C5—C6—C1180.0
C3—C4—C5—N1180.0C6—N2—C7—C8180.0
O3—N1—C5—C40.0C6—N2—C7—C962.9 (2)
O4—N1—C5—C4180.0C6—N2—C7—C9i−62.9 (2)
O3—N1—C5—C6180.0C4—C3—C10—O20.0
O4—N1—C5—C60.0C2—C3—C10—O2180.0
C7—N2—C6—C10.0C4—C3—C10—O1180.0
C7—N2—C6—C5180.0C2—C3—C10—O10.0

Symmetry codes: (i) x, −y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2ii0.82 (4)1.83 (4)2.655 (4)178 (4)
C1—H1A···O3iii0.932.523.407 (4)161
N2—H1N2···O40.81 (4)1.97 (4)2.641 (4)139 (4)
C9—H9C···O2iv0.962.533.437 (3)158

Symmetry codes: (ii) −x+1, y, −z+1; (iii) x, y, z−1; (iv) −x+1/2, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2439).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brouillette, J. W., Atigadda, V. R., Luo, M., Air, G. M., Babu, Y. S. & Bantia, S. (1999). Bioorg. Med. Chem. Lett.9, 1901–1906. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Mohd Maidin, S. M., Abdul Rahim, A. S., Osman, H., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o1550–o1551. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Williams, M., Bischofberger, N., Swaminathan, S. & Kim, C. U. (1995). Bioorg. Med. Chem. Lett.5, 2251–2254.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography