PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1333.
Published online 2009 May 20. doi:  10.1107/S1600536809018273
PMCID: PMC2969588

4-Bromo­thio­benzamide

Abstract

The title compound, C7H6BrNS, crystallizes with two mol­ecules in the asymmetric unit. The dihedral angles between the aromatic ring and the thio­amide fragment are 23.6 (4) and 20.5 (3)° in the two mol­ecules. In the crystal, there are inter­molecular N—H(...)S hydrogen-bonding inter­actions between the amine group and the S atoms.

Related literature

For the uses of thio­amides, see: Akhtar et al. (2006 [triangle], 2007 [triangle], 2008 [triangle]); Jagodzinski et al. (2003 [triangle]). For the biological activity of thio­amides, see: Wei et al. (2006 [triangle]); Klimesova et al. (1999 [triangle]). For the synthesis of thio­amides, see: Kaboudin et al. (2006 [triangle]); Cava et al. (1985 [triangle]). For related crystal structures, see: Khan et al. (2009 [triangle]); Jian et al. (2006 [triangle]); Manaka & Sato (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1333-scheme1.jpg

Experimental

Crystal data

  • C7H6BrNS
  • M r = 216.10
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1333-efi1.jpg
  • a = 19.6325 (11) Å
  • b = 10.6101 (6) Å
  • c = 7.8859 (5) Å
  • β = 100.078 (1)°
  • V = 1617.31 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.26 mm−1
  • T = 296 K
  • 0.21 × 0.17 × 0.09 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.384, T max = 0.620
  • 12968 measured reflections
  • 3911 independent reflections
  • 2706 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.087
  • S = 1.03
  • 3911 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.82 e Å−3
  • Δρmin = −0.78 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018273/bt2956sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018273/bt2956Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authours thank the HEC, Pakistan, for a Ph.D. fellowship awarded to MuHK under the indiginous Ph.D. Program. JDM thanks Saint Mary’s University for funding.

supplementary crystallographic information

Comment

Thioamides are biologically active compounds, possessing a wide spectrum of activities (Klimesova et al., 1999; Wei et al., 2006). They have enormous practical and synthetic applicability and their importance and impact as synthetic intermediates is continuously growing (Jagodzinski et al., 2003). Thioamides are generally synthesized using Lawesson's reagent (Cava et al., 1985) or phosphorus penta sulfide (Kaboudin et al., 2006). In this article, we wish to report the crystal structure of 4-bromobenzothioamide, which was synthesized by treating 4-bromobenzonitrile with 70% sodium hydrogen sulfide hydrate and magnesium chloride hexahydrate (Manaka & Sato, 2005) in continuation of our previous work on the synthesis and biological screenings of five membered heterocycles (Akhtar et al., 2006, 2007, 2008).

The hydrogen bonding interactions between the nitrogen and sulfur atoms (3.500 (2)Å to 3.605 (3) Å) are in the range of those seen in p-trifluoromethylbenzothioamide where the corresponding interactions are between 3.3735Å and 3.5133Å (Jian et al., 2006) and in the analogus chloride compound where the N···S distances are 3.3769 (15)Å and 3.4527 (15)Å (Khan et al., 2009).

Experimental

The slurry of 70% sodium hydrogen sulfide hydrate (21.98 mmol) and magnesium chloride hexahydrate (10.99 mmol) was prepared in DMF (40 mL). 4-Bromobenzonitrile (11.0 mmol) was added to the slurry and the mixture stirred at room temperature for 2 h. The resulting mixture was poured into water (100 mL) and the precipitated solid collected by filtration. The product obtained was resuspended in 1 N HCl (50 ml), stirred for another 30 min, filtered and washed with excess water. The recrystallization of the product from chloroform afforded the crystals of 4-bromobenzothioamide suitable for X-ray analysis.

Refinement

The hydrogen atoms were placed in geometrically idealized positions of 0.93Å (aromatic C—H) and 0.86Å (amide N—H) and constrained to ride on the parent atom with Uiso(H) = 1.2 UEq(c) for aromatic and amide protons.

Figures

Fig. 1.
Molecular structure of 4-bromobenzothioamide showing displacement ellipsoids at the 50% probability level (for non-H atoms).
Fig. 2.
Packing diagram of 4-bromobenzothioamide. Displacement ellipsoids are shown at the 50% probability level (for non-H atoms).

Crystal data

C7H6BrNSF(000) = 848
Mr = 216.10Dx = 1.775 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3900 reflections
a = 19.6325 (11) Åθ = 2.2–26.9°
b = 10.6101 (6) ŵ = 5.26 mm1
c = 7.8859 (5) ÅT = 296 K
β = 100.078 (1)°Block, yellow
V = 1617.31 (16) Å30.21 × 0.17 × 0.09 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer3911 independent reflections
Radiation source: fine-focus sealed tube2706 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −25→25
Tmin = 0.384, Tmax = 0.620k = −13→14
12968 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0372P)2 + 0.7786P] where P = (Fo2 + 2Fc2)/3
3911 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = −0.77 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br20.315314 (16)0.36346 (4)0.36641 (5)0.07035 (13)
Br10.538072 (18)0.69050 (5)1.27120 (5)0.08477 (16)
S2−0.04123 (4)0.26135 (7)0.39188 (10)0.05003 (18)
S10.21328 (4)0.52885 (7)0.75427 (10)0.05230 (19)
N2−0.03383 (11)0.4881 (2)0.2688 (3)0.0473 (6)
H2A−0.01190.55150.23670.057*
H2B−0.07800.49160.26230.057*
C10.23831 (13)0.6495 (2)0.8875 (3)0.0412 (6)
C90.07643 (12)0.3842 (2)0.3369 (3)0.0342 (5)
C120.21855 (13)0.3743 (3)0.3549 (3)0.0429 (6)
C100.10919 (14)0.4633 (2)0.2364 (4)0.0459 (6)
H10A0.08310.52000.16180.055*
C140.11668 (14)0.3004 (3)0.4448 (3)0.0474 (7)
H14A0.09560.24660.51310.057*
C50.44606 (15)0.6804 (3)1.1491 (4)0.0558 (8)
C80.00020 (13)0.3859 (2)0.3280 (3)0.0370 (5)
C130.18748 (14)0.2945 (3)0.4535 (4)0.0515 (7)
H13A0.21370.23660.52600.062*
C110.18020 (15)0.4589 (3)0.2457 (4)0.0498 (7)
H11A0.20180.51270.17850.060*
N10.19425 (12)0.7375 (2)0.9174 (3)0.0554 (6)
H1A0.20820.79850.98670.067*
H1B0.15170.73380.86750.067*
C20.31088 (13)0.6623 (2)0.9781 (3)0.0408 (6)
C60.40650 (16)0.7873 (3)1.1197 (4)0.0622 (8)
H6A0.42500.86541.15630.075*
C30.35274 (15)0.5562 (3)1.0060 (4)0.0549 (7)
H3A0.33510.47830.96590.066*
C70.33903 (15)0.7780 (3)1.0352 (4)0.0540 (7)
H7A0.31190.85021.01620.065*
C40.42000 (16)0.5644 (3)1.0919 (4)0.0639 (9)
H4A0.44750.49261.11100.077*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br20.03962 (17)0.0895 (3)0.0834 (3)0.00005 (15)0.01476 (15)0.00159 (19)
Br10.04511 (19)0.1196 (4)0.0842 (3)−0.00878 (19)−0.00386 (16)−0.0108 (2)
S20.0434 (4)0.0390 (4)0.0685 (5)−0.0063 (3)0.0120 (3)0.0056 (3)
S10.0465 (4)0.0459 (4)0.0626 (5)−0.0022 (3)0.0043 (3)−0.0081 (3)
N20.0398 (12)0.0358 (12)0.0667 (15)0.0016 (9)0.0101 (11)0.0030 (11)
C10.0427 (14)0.0402 (14)0.0415 (14)0.0002 (11)0.0096 (11)0.0055 (11)
C90.0400 (13)0.0271 (12)0.0358 (13)−0.0022 (10)0.0076 (10)−0.0035 (10)
C120.0405 (14)0.0435 (15)0.0448 (15)−0.0022 (12)0.0078 (11)−0.0071 (12)
C100.0485 (15)0.0347 (14)0.0566 (17)0.0078 (12)0.0150 (12)0.0086 (12)
C140.0444 (15)0.0515 (17)0.0459 (15)−0.0021 (12)0.0067 (12)0.0152 (13)
C50.0392 (15)0.078 (2)0.0497 (17)−0.0057 (15)0.0057 (12)−0.0030 (15)
C80.0428 (13)0.0305 (13)0.0375 (13)−0.0018 (10)0.0065 (10)−0.0057 (10)
C130.0420 (15)0.0607 (18)0.0499 (16)0.0040 (13)0.0023 (12)0.0138 (14)
C110.0552 (17)0.0372 (15)0.0628 (18)−0.0003 (13)0.0261 (14)0.0071 (13)
N10.0442 (13)0.0528 (15)0.0659 (16)0.0090 (11)0.0004 (11)−0.0115 (12)
C20.0395 (13)0.0418 (15)0.0420 (14)0.0003 (11)0.0099 (11)0.0036 (11)
C60.0509 (18)0.063 (2)0.072 (2)−0.0100 (15)0.0088 (15)−0.0202 (17)
C30.0483 (16)0.0439 (16)0.069 (2)−0.0015 (13)0.0022 (14)0.0035 (14)
C70.0518 (17)0.0471 (17)0.0633 (19)−0.0007 (13)0.0108 (14)−0.0083 (14)
C40.0477 (17)0.058 (2)0.082 (2)0.0054 (15)0.0008 (15)0.0080 (17)

Geometric parameters (Å, °)

Br2—C121.890 (3)C14—C131.381 (4)
Br1—C51.896 (3)C14—H14A0.9300
S2—C81.675 (3)C5—C61.371 (5)
S1—C11.674 (3)C5—C41.379 (5)
N2—C81.316 (3)C13—H13A0.9300
N2—H2A0.8600C11—H11A0.9300
N2—H2B0.8600N1—H1A0.8600
C1—N11.322 (3)N1—H1B0.8600
C1—C21.484 (4)C2—C31.388 (4)
C9—C141.380 (3)C2—C71.389 (4)
C9—C101.388 (3)C6—C71.378 (4)
C9—C81.486 (3)C6—H6A0.9300
C12—C131.364 (4)C3—C41.377 (4)
C12—C111.373 (4)C3—H3A0.9300
C10—C111.384 (4)C7—H7A0.9300
C10—H10A0.9300C4—H4A0.9300
C8—N2—H2A120.0C12—C13—C14119.3 (3)
C8—N2—H2B120.0C12—C13—H13A120.3
H2A—N2—H2B120.0C14—C13—H13A120.3
N1—C1—C2116.9 (2)C12—C11—C10119.5 (3)
N1—C1—S1121.5 (2)C12—C11—H11A120.3
C2—C1—S1121.58 (19)C10—C11—H11A120.3
C14—C9—C10118.0 (2)C1—N1—H1A120.0
C14—C9—C8120.0 (2)C1—N1—H1B120.0
C10—C9—C8122.0 (2)H1A—N1—H1B120.0
C13—C12—C11120.8 (3)C3—C2—C7118.3 (3)
C13—C12—Br2118.7 (2)C3—C2—C1119.6 (2)
C11—C12—Br2120.4 (2)C7—C2—C1122.1 (2)
C11—C10—C9120.8 (2)C5—C6—C7119.3 (3)
C11—C10—H10A119.6C5—C6—H6A120.3
C9—C10—H10A119.6C7—C6—H6A120.3
C9—C14—C13121.5 (2)C4—C3—C2121.1 (3)
C9—C14—H14A119.2C4—C3—H3A119.4
C13—C14—H14A119.2C2—C3—H3A119.4
C6—C5—C4121.1 (3)C6—C7—C2121.0 (3)
C6—C5—Br1120.0 (2)C6—C7—H7A119.5
C4—C5—Br1118.9 (2)C2—C7—H7A119.5
N2—C8—C9118.1 (2)C3—C4—C5119.1 (3)
N2—C8—S2120.9 (2)C3—C4—H4A120.5
C9—C8—S2120.96 (18)C5—C4—H4A120.5
C3—C1—C2—S123.6 (3)C14—C8—C9—S220.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···S2i0.862.733.583 (2)172
N2—H2B···S1ii0.862.653.500 (2)173
N1—H1A···S1iii0.862.783.605 (3)160
N1—H1B···S2ii0.862.713.523 (2)158

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, −y+1, −z+1; (iii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2956).

References

  • Akhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem.18, 316–322.
  • Akhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008). Acta Pharm.58, 135–149. [PubMed]
  • Akhtar, T., Hameed, S., Lu, X., Yasin, K. A. & Khan, M. H. (2006). X-ray Struct. Anal. Online, 22, x307–x308.
  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cava, M. P. & Levinson, M. I. (1985). Tetrahedron, 41, 5061–5087.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jagodzinski, T. S. (2003). Chem. Rev.103, 197–227. [PubMed]
  • Jian, F. F., Zhao, P., Zhang, L. & Zheng, J. (2006). J. Fluorine Chem.127, 63–67.
  • Kaboudin, B. & Elhamifar, D. (2006). Synthesis Stuttgart, pp. 224–226.
  • Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009). Acta Cryst. E65, o1128. [PMC free article] [PubMed]
  • Klimesova, V., Svoboda, M., Waisser, K. K., Kaustova, J., Buchta, V. & Kra’lova, K. (1999). Eur. J. Med. Chem.34, 433–440.
  • Manaka, A. & Sato, M. (2005). Synth. Commun.35, 761–764.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wei, Q.-L., Zhang, S.-S., Gao, J., Li, W.-H., Xu, L.-Z. & Yu, Z.-G. (2006). Bioorg. Med. Chem.14, 7146–7153. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography