PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1261.
Published online 2009 May 14. doi:  10.1107/S1600536809016560
PMCID: PMC2969587

4-(6-Quinolyl­oxymeth­yl)benzonitrile

Abstract

The title compound, C17H12N2O, was synthesized by an ether synthesis from quinolin-6-ol and 4-(bromo­meth­yl)benzonitrile. The phenyl ring of the benzonitrile group makes a dihedral angle of 47.52 (6)° with the plane of the quinoline fragment. The crystal structure is stabilized by inter­molecular C—H(...)π inter­actions between a benzene H atom of the benzonitrile group and the benzene ring of the quinoline fragment. In addition, the crystal structure also exhibits a weak inter­molecular C—H(...)N hydrogen bond.

Related literature

For general background to nitrile compounds, see: Jin et al. (1994 [triangle]); Brewis et al. (2003 [triangle]). For related structures, see: Fu & Zhao (2007 [triangle]); Zhao (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1261-scheme1.jpg

Experimental

Crystal data

  • C17H12N2O
  • M r = 260.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1261-efi7.jpg
  • a = 9.466 (2) Å
  • b = 13.078 (3) Å
  • c = 10.857 (2) Å
  • β = 90.81 (3)°
  • V = 1343.9 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.976, T max = 0.981
  • 12007 measured reflections
  • 2622 independent reflections
  • 1956 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.120
  • S = 1.06
  • 2622 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016560/lx2099sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016560/lx2099Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant (No. 4007041028) and a Science Technology Grant (No. KJ2009375) from Southeast University to YHL.

supplementary crystallographic information

Comment

The synthesis of new azoles has been a very active area of research and one important aspect has been the incorporation of functional units. Nitrile derivatives have found many industrial applications. For example, phthalonitriles have been used as starting materials for phthalocyanines (Jin et al., 1994), which are important components for dyes, pigments, gas sensors, optical limiters and liquid crystals, and which are also used in medicine, as singlet oxygen photosensitisers for photodynamic therapy (PDT; Brewis et al., 2003). Recently, we have reported a few benzonitrile compounds (Fu & Zhao, 2007; Zhao, 2008). As an extension of our work on the structural characterization, Here we present the synthesis and crystal structure of the title compound 4-[(quinolin-6-yloxy)methyl]benzonitrile (Fig. 1).

The phenyl ring (C11–C16) make a dihedral angle of 47.44 (1)° with the plane of the quinoline fragment. The molecular packing (Fig. 2) is stabilized by intermolecular C—H···π interactions between the benzene H atom of benzonitrile group and the benzene ring of the quinoline fragment from an adjacent molecule, with a C12—H12···Cgi separation of 2.83 Å (Fig. 2 and Table 1; Cg is the centroid of the C1–C4/C8/C9 benzene ring, symmetry code as in Fig. 2). Additionally, a weak intermolecular C—H···N hydrogen bond in the structure is observed (Fig. 2 and Table 1).

Experimental

Quinolin-6-ol (1 g, 0.0069 mol) was added to a solution of sodium hydroxide (0.276 g, 0.0069 mol) in 15 ml of methanol and stirred for one hour. Then 4-(bromomethyl)benzonitrile (1.352 g, 0.0069 mol) was added to the above solution. The mixture was stirred at room temperature for 1 d. The title compound was isolated using column chromatography (petroleum ether:ethyl acetate = 2:1). Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of ethyl acetate and tetrahydrofuran solution.

Refinement

All the C—H H atoms were calculated geometrically and with C—H distances ranging from 0.93 to 0.97 Å and were allowed to ride on the C and O atoms to which they are bonded. With which Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
The C—H···π and C—H···N interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) -x + 1/2, y + 1/2, -z + 1/2; (ii) x, y + 1, z; (iii) ...

Crystal data

C17H12N2OF(000) = 544
Mr = 260.29Dx = 1.286 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10916 reflections
a = 9.466 (2) Åθ = 6.2–55.5°
b = 13.078 (3) ŵ = 0.08 mm1
c = 10.857 (2) ÅT = 293 K
β = 90.81 (3)°Prism, colourless
V = 1343.9 (5) Å30.30 × 0.26 × 0.24 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer2622 independent reflections
Radiation source: fine-focus sealed tube1956 reflections with I > 2σ(I)
graphiteRint = 0.054
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = −11→11
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −16→16
Tmin = 0.976, Tmax = 0.981l = −13→13
12007 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.120w = 1/[σ2(Fo2) + (0.050P)2 + 0.1913P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2622 reflectionsΔρmax = 0.14 e Å3
182 parametersΔρmin = −0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.48772 (13)0.46617 (8)0.29375 (10)0.0598 (4)
N10.40388 (17)0.05815 (11)0.18437 (15)0.0620 (4)
N20.7214 (2)0.99565 (14)0.44097 (18)0.0841 (6)
C10.46122 (17)0.36816 (12)0.25614 (16)0.0484 (4)
C20.49253 (18)0.29346 (13)0.34606 (16)0.0538 (5)
H20.52510.31340.42360.065*
C30.47550 (19)0.19262 (13)0.32018 (16)0.0547 (5)
H30.49840.14410.37980.066*
C40.42364 (17)0.16054 (12)0.20416 (16)0.0478 (4)
C50.3504 (2)0.03171 (15)0.07708 (19)0.0701 (6)
H50.3356−0.03760.06240.084*
C60.3139 (2)0.10024 (15)−0.01687 (19)0.0691 (6)
H60.27640.0765−0.09120.083*
C70.33370 (19)0.20151 (13)0.00168 (16)0.0570 (5)
H70.31030.2482−0.05990.068*
C80.39011 (16)0.23550 (12)0.11523 (15)0.0451 (4)
C90.40997 (17)0.34014 (12)0.14319 (15)0.0474 (4)
H90.38810.38980.08460.057*
C100.45964 (19)0.54615 (12)0.20742 (16)0.0526 (4)
H10A0.35880.55170.19180.063*
H10B0.50560.53160.13010.063*
C110.51542 (17)0.64433 (12)0.26109 (15)0.0478 (4)
C120.43628 (18)0.73295 (12)0.25445 (17)0.0531 (5)
H120.34660.73100.21850.064*
C130.48752 (18)0.82412 (13)0.30002 (17)0.0552 (5)
H130.43300.88310.29480.066*
C140.62108 (18)0.82714 (12)0.35366 (15)0.0494 (4)
C150.70261 (19)0.73897 (13)0.35993 (17)0.0576 (5)
H150.79270.74100.39510.069*
C160.64942 (19)0.64883 (13)0.31393 (17)0.0574 (5)
H160.70420.58990.31830.069*
C170.6764 (2)0.92132 (15)0.40205 (17)0.0607 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0811 (9)0.0411 (7)0.0567 (8)−0.0085 (6)−0.0115 (6)0.0033 (5)
N10.0743 (11)0.0411 (9)0.0705 (11)0.0007 (7)0.0028 (8)0.0007 (7)
N20.0966 (13)0.0606 (11)0.0946 (13)−0.0189 (10)−0.0163 (10)−0.0113 (10)
C10.0489 (9)0.0409 (9)0.0551 (10)−0.0042 (7)−0.0015 (8)0.0030 (8)
C20.0596 (11)0.0524 (11)0.0494 (10)−0.0030 (8)−0.0063 (8)0.0048 (8)
C30.0610 (11)0.0479 (11)0.0553 (11)0.0019 (8)−0.0030 (8)0.0128 (8)
C40.0455 (9)0.0412 (10)0.0569 (11)0.0011 (7)0.0043 (8)0.0037 (8)
C50.0847 (15)0.0449 (11)0.0808 (15)−0.0049 (9)0.0041 (11)−0.0085 (10)
C60.0842 (14)0.0584 (12)0.0646 (12)−0.0103 (10)−0.0065 (10)−0.0105 (10)
C70.0635 (12)0.0526 (11)0.0546 (11)−0.0049 (8)−0.0053 (9)0.0016 (8)
C80.0396 (9)0.0439 (9)0.0516 (10)−0.0019 (7)0.0007 (7)0.0025 (7)
C90.0502 (10)0.0433 (9)0.0485 (10)−0.0011 (7)−0.0052 (7)0.0089 (7)
C100.0589 (11)0.0427 (10)0.0562 (11)−0.0010 (8)−0.0035 (8)0.0040 (8)
C110.0489 (10)0.0431 (10)0.0514 (10)−0.0033 (7)0.0032 (7)0.0030 (7)
C120.0439 (10)0.0472 (10)0.0681 (12)−0.0011 (7)−0.0023 (8)0.0004 (8)
C130.0534 (11)0.0418 (10)0.0706 (12)0.0031 (8)0.0033 (9)0.0025 (8)
C140.0543 (11)0.0434 (9)0.0506 (10)−0.0084 (7)0.0036 (8)0.0015 (7)
C150.0499 (10)0.0553 (11)0.0673 (12)−0.0016 (8)−0.0093 (9)0.0009 (9)
C160.0559 (11)0.0442 (10)0.0718 (12)0.0069 (8)−0.0075 (9)0.0004 (8)
C170.0664 (12)0.0532 (11)0.0626 (12)−0.0073 (9)−0.0030 (9)0.0002 (9)

Geometric parameters (Å, °)

O1—C11.3674 (19)C7—H70.9300
O1—C101.4269 (19)C8—C91.414 (2)
N1—C51.310 (2)C9—H90.9300
N1—C41.369 (2)C10—C111.503 (2)
N2—C171.140 (2)C10—H10A0.9700
C1—C91.363 (2)C10—H10B0.9700
C1—C21.410 (2)C11—C121.381 (2)
C2—C31.358 (2)C11—C161.386 (2)
C2—H20.9300C12—C131.377 (2)
C3—C41.409 (2)C12—H120.9300
C3—H30.9300C13—C141.385 (2)
C4—C81.409 (2)C13—H130.9300
C5—C61.398 (3)C14—C151.389 (2)
C5—H50.9300C14—C171.435 (2)
C6—C71.352 (3)C15—C161.373 (2)
C6—H60.9300C15—H150.9300
C7—C81.408 (2)C16—H160.9300
C1—O1—C10117.34 (12)C1—C9—H9120.1
C5—N1—C4116.62 (16)C8—C9—H9120.1
C9—C1—O1125.61 (15)O1—C10—C11108.09 (13)
C9—C1—C2120.38 (15)O1—C10—H10A110.1
O1—C1—C2114.01 (14)C11—C10—H10A110.1
C3—C2—C1120.44 (16)O1—C10—H10B110.1
C3—C2—H2119.8C11—C10—H10B110.1
C1—C2—H2119.8H10A—C10—H10B108.4
C2—C3—C4120.86 (16)C12—C11—C16118.59 (15)
C2—C3—H3119.6C12—C11—C10120.62 (15)
C4—C3—H3119.6C16—C11—C10120.74 (15)
N1—C4—C8122.97 (16)C13—C12—C11121.32 (16)
N1—C4—C3118.47 (15)C13—C12—H12119.3
C8—C4—C3118.53 (15)C11—C12—H12119.3
N1—C5—C6124.62 (18)C12—C13—C14119.39 (16)
N1—C5—H5117.7C12—C13—H13120.3
C6—C5—H5117.7C14—C13—H13120.3
C7—C6—C5119.14 (18)C13—C14—C15120.02 (15)
C7—C6—H6120.4C13—C14—C17120.32 (16)
C5—C6—H6120.4C15—C14—C17119.67 (16)
C6—C7—C8119.31 (17)C16—C15—C14119.63 (16)
C6—C7—H7120.3C16—C15—H15120.2
C8—C7—H7120.3C14—C15—H15120.2
C7—C8—C4117.33 (15)C15—C16—C11121.04 (16)
C7—C8—C9122.75 (15)C15—C16—H16119.5
C4—C8—C9119.89 (15)C11—C16—H16119.5
C1—C9—C8119.88 (15)N2—C17—C14179.4 (2)
C10—O1—C1—C9−0.1 (2)O1—C1—C9—C8178.66 (15)
C10—O1—C1—C2179.55 (14)C2—C1—C9—C8−1.0 (2)
C9—C1—C2—C31.7 (3)C7—C8—C9—C1178.09 (16)
O1—C1—C2—C3−177.98 (16)C4—C8—C9—C1−0.1 (2)
C1—C2—C3—C4−1.3 (3)C1—O1—C10—C11−171.97 (14)
C5—N1—C4—C8−0.4 (3)O1—C10—C11—C12−135.85 (16)
C5—N1—C4—C3177.42 (17)O1—C10—C11—C1646.7 (2)
C2—C3—C4—N1−177.77 (16)C16—C11—C12—C13−0.6 (3)
C2—C3—C4—C80.2 (3)C10—C11—C12—C13−178.12 (16)
C4—N1—C5—C60.5 (3)C11—C12—C13—C140.0 (3)
N1—C5—C6—C7−0.1 (3)C12—C13—C14—C150.7 (3)
C5—C6—C7—C8−0.2 (3)C12—C13—C14—C17−179.84 (16)
C6—C7—C8—C40.3 (2)C13—C14—C15—C16−0.7 (3)
C6—C7—C8—C9−178.00 (17)C17—C14—C15—C16179.81 (17)
N1—C4—C8—C70.1 (2)C14—C15—C16—C110.1 (3)
C3—C4—C8—C7−177.76 (16)C12—C11—C16—C150.6 (3)
N1—C4—C8—C9178.39 (15)C10—C11—C16—C15178.10 (16)
C3—C4—C8—C90.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12···Cgi0.932.833.613 (2)142
C13—H13···N1ii0.932.603.398 (2)145

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2099).

References

  • Brewis, M., Helliwell, M. & McKeown, N. B. (2003). Tetrahedron, 59, 3863–3872.
  • Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.
  • Jin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem 468, 205–212.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhao, Y.-Y. (2008). Acta Cryst. E64, o761. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography