PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1329.
Published online 2009 May 20. doi:  10.1107/S1600536809016833
PMCID: PMC2969585

4-Amino-2,3,5-trimethyl­pyridine monohydrate

Abstract

In the title compound, C8H12N2·H2O, four substituted pyridine mol­ecules alternate with four water mol­ecules, forming a large ring via Owater—H(...)Npyridine and Namine—H(...)Owater hydrogen bonding. Adjacent rings are connected via Owater—H(...)Owater hydrogen-bonds, forming a three-dimensional network.

Related literature

For pyridine-amine derivatives, see: Smith et al. (2005 [triangle]); Tsuzuki et al. (2005 [triangle]). For their role as chemical inter­mediates in the formation of diverse mol­ecules possessing biological activity, see: Birault et al. (2005 [triangle]); Gordon et al. (1996 [triangle]); Player et al. (2007 [triangle]). For related structures, see: Li et al. (2008 [triangle]); Lin et al. (2005 [triangle]); Xie et al. (2008 [triangle]); Yu et al. (2005 [triangle]); Zhou et al. (2005 [triangle]). For the extinction correction, see: Larson (1970 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1329-scheme1.jpg

Experimental

Crystal data

  • C8H12N2·H2O
  • M r = 154.21
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-65-o1329-efi1.jpg
  • a = 19.5710 (9) Å
  • c = 4.8819 (2) Å
  • V = 1869.89 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 296 K
  • 0.33 × 0.27 × 0.22 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.967, T max = 0.984
  • 17243 measured reflections
  • 1250 independent reflections
  • 951 reflections with F 2 > 2.0σ(F 2)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.088
  • S = 1.00
  • 1250 reflections
  • 101 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2007 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks General, I. DOI: 10.1107/S1600536809016833/fl2246sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016833/fl2246Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We express our gratitude to Zhejiang University and Hangzhou Normal University for financial Support.

supplementary crystallographic information

Comment

There is continuing interest in pyridin-amine derivatives due to their significant bioactivities (Smith et al., 2005; Tsuzuki et al., 2005) and their role as important chemical intermediates in the formation of diverse molecules possessing biological activities (Birault et al., 2005; Gordon et al., 1996; Player et al., 2007). In general, compounds with amino groups can be used to prepare Schiff base ligands, which have played an important role in the development of coordination chemistry as they can readily form stable complexes with most metal ions (Lin et al., 2005; Yu et al., 2005; Zhou et al., 2005). As part of our continuing investigation of such compounds, we report here the synthesis and crystal structure of a new pyridinamine derivative (Fig.1). Hydrogen-bonding interactions play an important role in the solid-state structure of this compound as they have in similar structures reported earlier (Li et al., 2008; Xie et al., 2008). As shown in Fig.2, four pyridine molecules and four water molecules are linked together alternatively to form a big ring via OwaterH···Npyridine and Namine—H···Owater hydrogen bonding (Table 1). Adjacent rings are connected to form a three-dimensional network via Owater—H···Owater hydrogen-bonding. Channel can be seen within stacks of the hydrogen bonded rings. The inner walls of the channels are occupied by the methyl groups and no solvent was found.

Experimental

4-nitro-2,3,5-trimethylpyridine-N-oxide(18.2 g, 100 mmol), Raney nickel (25 g, 426 mmol) and 200 ml of ethanol were placed combined a three-necked flask. 80% Hydrazine hydrate(25 ml, 400 mmol) was added dropwise, maintaining the temperature under 35 degrees centigrade. The mixture was heated to reflux and 80% hydrazine hydrate was added dropwise continually. The catalyst was suction-filtered. Half of the ethanol was concentrated under vacuum. The residue was left at room temperature for 7 days giving some colorless needle shaped crystals suitable for data collection.

Refinement

Friedel equivalents were merged. All H atoms were placed in calculated positions, with C—H = 0.93 or 0.96Å and N—H = 0.869 or 0.877 Å and included in the final cycles of refinement with a riding model, with Uiso(H) = 1.2Ueq(C,N,O).

Figures

Fig. 1.
Molecular structure showing 40% probability displacement ellipsoids.
Fig. 2.
Hydrogen-bonding interactions.

Crystal data

C8H12N2·H2ODx = 1.095 Mg m3
Mr = 154.21Mo Kα radiation, λ = 0.71075 Å
Tetragonal, P421cCell parameters from 10766 reflections
Hall symbol: P -4 2nθ = 3.3–27.4°
a = 19.5710 (9) ŵ = 0.07 mm1
c = 4.8819 (2) ÅT = 296 K
V = 1869.89 (14) Å3Chunk, colorless
Z = 80.33 × 0.27 × 0.22 mm
F(000) = 672.00

Data collection

Rigaku R-AXIS RAPID diffractometer951 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.045
ω scansθmax = 27.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −25→25
Tmin = 0.967, Tmax = 0.984k = −25→25
17243 measured reflectionsl = −6→5
1250 independent reflections

Refinement

Refinement on F2w = 1/[0.0001Fo2 + 1.1100σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max < 0.001
wR(F2) = 0.088Δρmax = 0.23 e Å3
S = 1.00Δρmin = −0.20 e Å3
1250 reflectionsExtinction correction: Larson (1970)
101 parametersExtinction coefficient: 460 (64)
H-atom parameters constrained

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY
Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.25888 (6)0.28901 (6)0.2514 (3)0.0571 (4)
N10.23938 (11)0.42486 (10)0.3906 (4)0.0581 (6)
N20.19626 (9)0.61921 (9)0.6961 (4)0.0534 (6)
C10.27642 (12)0.47949 (12)0.3109 (5)0.0528 (7)
C20.26474 (11)0.54519 (11)0.4090 (5)0.0472 (6)
C30.21206 (11)0.55487 (11)0.6011 (4)0.0427 (6)
C40.17323 (12)0.49824 (12)0.6859 (4)0.0465 (6)
C50.18992 (12)0.43602 (12)0.5762 (5)0.0556 (8)
C60.33136 (13)0.46412 (12)0.1049 (7)0.0756 (9)
C70.30672 (12)0.60551 (12)0.3136 (6)0.0690 (9)
C80.11654 (12)0.50507 (12)0.8924 (5)0.0603 (7)
H50.16490.39840.63500.067*
H610.37530.46740.19130.091*
H620.32510.41870.03450.091*
H630.32880.4964−0.04280.091*
H710.32900.59430.14420.083*
H720.27740.64420.28650.083*
H730.34050.61630.44950.083*
H810.13530.51841.06600.072*
H820.08470.53910.83150.072*
H830.09350.46200.91130.072*
H1010.25300.33170.29010.069*
H1020.24570.27710.09210.069*
H2010.17550.62290.84890.064*
H2020.22660.65110.67430.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0663 (10)0.0465 (9)0.0584 (10)0.0063 (8)−0.0044 (9)−0.0047 (9)
N10.0701 (14)0.0454 (11)0.0587 (14)0.0003 (10)0.0039 (14)−0.0022 (11)
N20.0624 (13)0.0433 (11)0.0545 (12)−0.0029 (9)0.0092 (11)−0.0006 (10)
C10.0563 (16)0.0549 (16)0.0471 (14)0.0083 (12)0.0024 (13)−0.0024 (13)
C20.0504 (14)0.0454 (14)0.0459 (13)0.0003 (11)0.0032 (14)0.0021 (13)
C30.0472 (13)0.0398 (12)0.0411 (12)0.0003 (10)−0.0022 (12)0.0001 (12)
C40.0507 (14)0.0452 (13)0.0435 (12)−0.0002 (12)−0.0022 (12)0.0036 (13)
C50.0658 (17)0.0454 (15)0.0557 (15)−0.0047 (12)0.0015 (15)0.0042 (14)
C60.086 (2)0.0690 (19)0.0717 (19)0.0162 (16)0.021 (2)−0.0020 (18)
C70.0674 (17)0.0627 (17)0.077 (2)−0.0054 (14)0.0164 (17)0.0013 (16)
C80.0640 (16)0.0609 (15)0.0562 (14)−0.0072 (13)0.0067 (15)0.0060 (16)

Geometric parameters (Å, °)

N1—C11.349 (3)N2—H2010.852
N1—C51.344 (3)N2—H2020.868
N2—C31.377 (2)C5—H50.930
C1—C21.391 (3)C6—H610.960
C1—C61.503 (3)C6—H620.960
C2—C31.407 (3)C6—H630.960
C2—C71.512 (3)C7—H710.960
C3—C41.406 (3)C7—H720.960
C4—C51.370 (3)C7—H730.960
C4—C81.505 (3)C8—H810.960
O1—H1010.864C8—H820.960
O1—H1020.852C8—H830.960
C1—N1—C5116.9 (2)C4—C5—H5117.3
N1—C1—C2123.0 (2)C1—C6—H61109.5
N1—C1—C6114.8 (2)C1—C6—H62109.5
C2—C1—C6122.2 (2)C1—C6—H63109.5
C1—C2—C3118.3 (2)H61—C6—H62109.5
C1—C2—C7121.8 (2)H61—C6—H63109.5
C3—C2—C7119.9 (2)H62—C6—H63109.5
N2—C3—C2120.82 (19)C2—C7—H71109.5
N2—C3—C4120.0 (2)C2—C7—H72109.5
C2—C3—C4119.1 (2)C2—C7—H73109.5
C3—C4—C5117.2 (2)H71—C7—H72109.5
C3—C4—C8121.7 (2)H71—C7—H73109.5
C5—C4—C8121.1 (2)H72—C7—H73109.5
N1—C5—C4125.4 (2)C4—C8—H81109.5
H101—O1—H102115.0C4—C8—H82109.5
C3—N2—H201118.6C4—C8—H83109.5
C3—N2—H202117.5H81—C8—H82109.5
H201—N2—H202111.9H81—C8—H83109.5
N1—C5—H5117.3H82—C8—H83109.5
C1—N1—C5—C41.5 (3)C7—C2—C3—N22.6 (3)
C5—N1—C1—C2−0.9 (3)C7—C2—C3—C4179.6 (2)
C5—N1—C1—C6179.6 (2)N2—C3—C4—C5177.6 (2)
N1—C1—C2—C30.3 (3)N2—C3—C4—C8−3.5 (3)
N1—C1—C2—C7−179.4 (2)C2—C3—C4—C50.6 (3)
C6—C1—C2—C3179.8 (2)C2—C3—C4—C8179.5 (2)
C6—C1—C2—C70.1 (2)C3—C4—C5—N1−1.3 (3)
C1—C2—C3—N2−177.1 (2)C8—C4—C5—N1179.8 (2)
C1—C2—C3—C4−0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H101···N10.861.912.771 (2)178
O1—H102···O1i0.851.932.778 (2)173
N2—H202···O1ii0.872.173.009 (2)161

Symmetry codes: (i) −y+1/2, −x+1/2, z−1/2; (ii) y, −x+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2246).

References

  • Birault, V., Harris, C. J. & Harris, J. C. (2005). UK Patent GB2403721 A.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gordon, W. R., Brian, D. P. & Andrew, M. T. (1996). J. Med. Chem.39, 1823–1835.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  • Li, Y., Li, P., Zhou, Q.-P., Zhang, G.-F. & Ng, S. W. (2008). Acta Cryst. E64, o1701. [PMC free article] [PubMed]
  • Lin, H., Feng, Y. L. & Gao, S. (2005). Chin. J. Struct. Chem.24, 375–378.
  • Player, M. R., Lu, T., Hu, H. & Zhu, X. (2007). World Patent WO2007109459 A2.
  • Rigaku (2007). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Smith, D. T., Shi, R. & Borgens, R. B. (2005). Eur. J. Med. Chem.40, 908–917. [PubMed]
  • Tsuzuki, S., Kawanishi, Y. & Abe, S. (2005). Biosens. Bioelectron.20, 1452–1457. [PubMed]
  • Xie, A.-L., Ding, T.-J. & Cao, X.-P. (2008). Acta Cryst. E64, o1746. [PMC free article] [PubMed]
  • Yu, Q., Zhu, L. G. & Bian, H. D. (2005). Chin. J. Struct. Chem.24, 1271–1275.
  • Zhou, Y. Z., Li, J. F. & Tu, S. J. (2005). Chin. J. Struct. Chem.24, 1193–1197.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography