PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1398.
Published online 2009 May 23. doi:  10.1107/S160053680901890X
PMCID: PMC2969580

2-Amino­benzothia­zolium 2,4-dicarboxy­benzoate monohydrate

Abstract

Cocrystallization of 2-amino­benzothia­zole with benzene-1,2,4-tricarboxylic acid in a mixed solvent affords the title ternary cocrystal, C7H7N2S+·C9H5O6 ·H2O, in which one of the carboxyl groups of the benzene­tricarboxylic acid is deproton­ated and the heterocyclic N atom of the 2-amino­benzothia­zole is protonated. In the crystal, inter­molecular N—H(...)O and O—H(...)O hydrogen-bonding inter­actions stabilize the packing.

Related literature

For the properties of benzothia­zole and its derivative and their uses in crystal engineering, see: Batista et al. (2007 [triangle]); Leng et al. (2001 [triangle]); Chen et al. (2008 [triangle]); Kovalska et al. (2006 [triangle]); Marconato et al. (1998 [triangle]). For 2-amino­benzothia­zole (Abt) metal complexes, see: Batı et al. (2005 [triangle]); Sieroń & Bukowska-Strzyzewska (1999 [triangle]); Usman et al. (2003 [triangle]). For Abt-based cocrystals, see: Lynch et al. (1998 [triangle], 1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1398-scheme1.jpg

Experimental

Crystal data

  • C7H7N2S+·C9H5O6 ·H2O
  • M r = 378.35
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1398-efi1.jpg
  • a = 6.8510 (4) Å
  • b = 24.3789 (15) Å
  • c = 9.7043 (6) Å
  • V = 1620.81 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 296 K
  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.953, T max = 0.960
  • 7728 measured reflections
  • 2632 independent reflections
  • 2446 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.070
  • S = 1.04
  • 2632 reflections
  • 237 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.18 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1116 Friedel pairs
  • Flack parameter: 0.10 (8)

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg & Berndt, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901890X/bt2963sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901890X/bt2963Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Tianjin Education Committee (2006ZD07).

supplementary crystallographic information

Comment

Benzothiazole and its derivatives are extensively used in the field of crystal engineering owing to their beautiful structure and potential applications as electroluminescent devices (Batista et al., 2007; Leng et al., 2001, Chen et al., 2008), fluorescent probes for DNA (Kovalska et al., 2006), and corrosion inhibitors (Marconato et al., 1998).

As one of the typical benzothiazole derivatives, 2-aminobenzothiazole (Abt) has been becoming a promising candidate for both the metal complexes and organic cocrystals, because they have rigid heterocyclic backbone and functional amino group. Consequently, various Abt–based metal complexes with diverse coligands have been considerably investigated (Batı et al., 2005; Sieroń et al., 1999; Usman et al., 2003). In contrast, the Abt-based cocrystals are limited documented (Lynch et al., 1998; Lynch et al., 1999). Thus, as a continuation of acid–base crystalline adducts, in the present paper, we choose Abt and aromatic 1, 2, 4-benzenetricarboxylic acid (H3btc) as building blocks to cocrystallize. As a result, an intermolecular proton–transfer adduct, (I), was obtained, which exhibits a two–dimensional hydrogen–bonded network.

As shown in Fig. 1, the asymmetric unit of (I) comprises one HAbt cation, a monodeprontonated H2btc anion and one water molecule. The exocyclic amino group of HAbt is roughly coplanar with the benzothiazole ring. In contrast, the deprotonated carboxy group of H2btc makes dihedral angle of 86.103 (1)°, and the other carboxylic groups form dihedral angles of 8.231 (1) and 1.962 (2)° with the benzene ring of H2btc, respectively. The benzothiazole and the benzene rings of H2btc exhibits a dihedral angle of 7.083 (2)°. In the asymmetric unit, an intermolecular N2–H2B ···O5 hydrogen–bonding interaction (Table 1) was observed to stabilize the adduct.

Two H2btc anions from the adjacent units are held together by intermolecular O6–H6···O2 interactions (Table 1) to form an infinite one–dimensional ribbon along the crystallographic c–axis (Fig. 2), in which lattice water molecules was entrapped by O4–H4···O7 hydrogen–bonding interaction between the carboxylic group of H2btc and water molecule..

Furthermore, the neighboring 1–D ribbons are head–to–tail connected together by four fold O4–H4···O7, N1–H1···O1, N2–H2A···O3, O7–H7A···O1 and O7–H7B···O2 hydrogen-bonding to form a separate two-dimensional supramolecular sheet without any weak π···πinteractions between neighboring sheets (Fig. 3). Thus, it can be concluded that the extensive hydrogen–bonding interactions play essentially roles for the extension of (I).

Experimental

2–Aminobenzothiazole (0.1 mmol, 15.0 mg) and 1, 2, 4–benzenetricarboxylic acid (0.1 mmol, 21.0 mg) were mixed in a CH3OH/H2O solution (v: v = 1:1, 10 ml) and stirred constantly for about 30 min. The resulting mixture was filtered. Colorless block crystals suitable for X–ray diffraction were collected by slow evaporation of the filtrate within one week. Yield: 56%. Anal. Calcd for C16H14N2O7S: C, 50.79; H, 3.73; N, 7.40%. Found: C, 50.66; H, 3.52; N, 7.28%.

Refinement

H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C – H = 0.93, O – H = 0.85, and N – H = 0.86 Å and Uiso(H) = 1.2 Ueq(C,N) or 1.5 Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), drawn with 30% probability displacement ellipsoids.
Fig. 2.
A perspective view of the one-dimensional hydrogen–bonded ribbon of (I). Hydrogen bonds are indicated by dashed lines.
Fig. 3.
The separate two-dimensional supramolecular sheet of (I).

Crystal data

C7H7N2S+·C9H5O6·H2ODx = 1.551 Mg m3
Mr = 378.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 4384 reflections
a = 6.8510 (4) Åθ = 3.1–27.9°
b = 24.3789 (15) ŵ = 0.25 mm1
c = 9.7043 (6) ÅT = 296 K
V = 1620.81 (17) Å3Block, colourless
Z = 40.20 × 0.18 × 0.17 mm
F(000) = 784

Data collection

Bruker APEXII CCD area-detector diffractometer2632 independent reflections
Radiation source: fine-focus sealed tube2446 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→8
Tmin = 0.953, Tmax = 0.960k = −29→19
7728 measured reflectionsl = −11→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070w = 1/[σ2(Fo2) + (0.0386P)2 + 0.1846P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2632 reflectionsΔρmax = 0.14 e Å3
237 parametersΔρmin = −0.18 e Å3
1 restraintAbsolute structure: Flack (1983), 1116 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.10 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.41587 (9)0.29601 (2)0.74515 (7)0.04137 (16)
O10.6936 (2)0.09280 (7)1.31365 (15)0.0397 (4)
O20.3712 (2)0.10037 (7)1.34480 (16)0.0415 (4)
O30.5680 (3)0.20862 (7)1.2595 (2)0.0566 (5)
O40.4844 (3)0.25690 (7)1.07597 (17)0.0464 (4)
H40.50550.28261.12840.070*
O50.3884 (3)0.17106 (7)0.63412 (16)0.0484 (5)
O60.3848 (3)0.08050 (6)0.61157 (14)0.0382 (4)
H60.36810.08820.53020.057*
N10.3226 (3)0.35998 (8)0.54800 (19)0.0397 (5)
H10.28800.37170.46810.048*
N20.3039 (3)0.26695 (9)0.4919 (2)0.0515 (6)
H2A0.26470.27400.40960.062*
H2B0.31900.23350.51800.062*
C10.3639 (3)0.39498 (10)0.6569 (3)0.0369 (5)
C20.4157 (3)0.36673 (10)0.7762 (3)0.0376 (6)
C30.4535 (4)0.39391 (12)0.8975 (3)0.0497 (7)
H30.48750.37510.97730.060*
C40.4387 (4)0.45033 (13)0.8957 (4)0.0601 (8)
H4A0.46240.46990.97630.072*
C50.3892 (4)0.47875 (11)0.7767 (4)0.0625 (9)
H50.38140.51680.77900.075*
C60.3515 (4)0.45135 (10)0.6548 (3)0.0508 (7)
H6A0.31910.47020.57470.061*
C70.3406 (3)0.30693 (10)0.5769 (2)0.0393 (6)
C80.4935 (3)0.10831 (9)1.1180 (2)0.0288 (5)
C90.4830 (3)0.16013 (9)1.0568 (2)0.0287 (5)
C100.4490 (3)0.16392 (9)0.9160 (2)0.0303 (5)
H100.43940.19830.87530.036*
C110.4293 (3)0.11747 (10)0.8351 (2)0.0281 (5)
C120.4424 (3)0.06607 (10)0.8962 (2)0.0308 (5)
H120.42980.03450.84310.037*
C130.4741 (3)0.06218 (9)1.0367 (2)0.0325 (5)
H130.48260.02771.07730.039*
C140.5236 (3)0.10060 (9)1.2723 (2)0.0307 (5)
C150.5155 (3)0.21044 (9)1.1409 (2)0.0324 (5)
C160.3977 (3)0.12557 (10)0.6837 (2)0.0314 (5)
O70.0300 (2)0.15288 (7)0.2293 (2)0.0530 (5)
H7A−0.07280.13560.25220.080*
H7B0.13770.14090.26070.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0528 (3)0.0398 (3)0.0315 (3)0.0040 (3)−0.0078 (3)0.0088 (3)
O10.0446 (9)0.0454 (10)0.0289 (9)0.0028 (8)−0.0099 (7)−0.0020 (7)
O20.0454 (9)0.0585 (11)0.0205 (7)−0.0054 (8)0.0019 (7)0.0018 (7)
O30.0987 (14)0.0412 (9)0.0299 (11)−0.0003 (10)−0.0185 (11)−0.0048 (9)
O40.0738 (12)0.0311 (9)0.0343 (9)0.0022 (9)−0.0091 (9)−0.0041 (8)
O50.0828 (14)0.0361 (10)0.0264 (9)0.0095 (9)−0.0025 (9)0.0046 (8)
O60.0583 (10)0.0387 (10)0.0177 (8)−0.0019 (8)−0.0019 (7)−0.0019 (7)
N10.0446 (12)0.0445 (12)0.0300 (11)0.0067 (9)−0.0005 (9)0.0139 (9)
N20.0771 (16)0.0469 (13)0.0305 (11)0.0143 (11)−0.0101 (11)0.0037 (10)
C10.0276 (12)0.0414 (13)0.0415 (14)−0.0011 (11)0.0045 (10)0.0082 (11)
C20.0299 (11)0.0423 (13)0.0406 (16)−0.0003 (10)−0.0001 (9)0.0062 (11)
C30.0397 (14)0.0623 (18)0.0470 (16)−0.0023 (12)−0.0069 (12)−0.0050 (14)
C40.0449 (16)0.0600 (19)0.075 (2)−0.0081 (14)−0.0057 (14)−0.0189 (17)
C50.0496 (15)0.0393 (14)0.099 (3)−0.0044 (13)0.0061 (16)−0.0028 (17)
C60.0430 (15)0.0393 (14)0.0701 (19)−0.0007 (12)0.0043 (13)0.0131 (14)
C70.0399 (13)0.0484 (14)0.0295 (13)0.0094 (11)0.0009 (10)0.0085 (11)
C80.0320 (12)0.0339 (12)0.0204 (11)−0.0010 (9)−0.0001 (9)−0.0003 (9)
C90.0322 (11)0.0314 (12)0.0225 (10)0.0011 (9)−0.0002 (9)0.0000 (9)
C100.0361 (12)0.0298 (12)0.0249 (11)0.0009 (9)0.0010 (9)0.0029 (9)
C110.0305 (11)0.0348 (14)0.0191 (10)−0.0002 (9)0.0009 (8)−0.0004 (9)
C120.0351 (12)0.0324 (12)0.0248 (11)−0.0016 (9)−0.0019 (9)−0.0033 (9)
C130.0403 (12)0.0296 (12)0.0278 (12)−0.0013 (10)−0.0011 (10)0.0050 (9)
C140.0431 (13)0.0283 (11)0.0207 (12)−0.0029 (9)−0.0024 (10)−0.0006 (9)
C150.0383 (13)0.0329 (12)0.0261 (12)0.0022 (9)0.0007 (10)−0.0019 (9)
C160.0319 (13)0.0364 (13)0.0259 (12)0.0012 (10)0.0006 (9)−0.0007 (10)
O70.0487 (10)0.0494 (10)0.0609 (13)0.0003 (8)0.0007 (10)0.0200 (10)

Geometric parameters (Å, °)

S1—C71.733 (2)C3—H30.9300
S1—C21.750 (2)C4—C51.389 (5)
O1—C141.246 (3)C4—H4A0.9300
O2—C141.259 (3)C5—C61.382 (4)
O3—C151.207 (3)C5—H50.9300
O4—C151.313 (3)C6—H6A0.9300
O4—H40.8200C8—C131.380 (3)
O5—C161.211 (3)C8—C91.398 (3)
O6—C161.306 (3)C8—C141.523 (3)
O6—H60.8200C9—C101.389 (3)
N1—C71.329 (3)C9—C151.490 (3)
N1—C11.388 (3)C10—C111.385 (3)
N1—H10.8600C10—H100.9300
N2—C71.301 (3)C11—C121.389 (3)
N2—H2A0.8600C11—C161.498 (3)
N2—H2B0.8600C12—C131.384 (3)
C1—C61.377 (3)C12—H120.9300
C1—C21.393 (3)C13—H130.9300
C2—C31.376 (4)O7—H7A0.8502
C3—C41.379 (4)O7—H7B0.8498
C7—S1—C290.61 (12)N1—C7—S1112.06 (18)
C15—O4—H4109.5C13—C8—C9119.23 (19)
C16—O6—H6109.5C13—C8—C14118.3 (2)
C7—N1—C1114.8 (2)C9—C8—C14122.44 (19)
C7—N1—H1122.6C10—C9—C8119.1 (2)
C1—N1—H1122.6C10—C9—C15120.6 (2)
C7—N2—H2A120.0C8—C9—C15120.23 (19)
C7—N2—H2B120.0C11—C10—C9121.3 (2)
H2A—N2—H2B120.0C11—C10—H10119.3
C6—C1—N1126.2 (2)C9—C10—H10119.3
C6—C1—C2121.4 (2)C10—C11—C12119.3 (2)
N1—C1—C2112.4 (2)C10—C11—C16117.6 (2)
C3—C2—C1121.4 (2)C12—C11—C16123.2 (2)
C3—C2—S1128.4 (2)C13—C12—C11119.5 (2)
C1—C2—S1110.14 (19)C13—C12—H12120.2
C2—C3—C4117.1 (3)C11—C12—H12120.2
C2—C3—H3121.5C8—C13—C12121.5 (2)
C4—C3—H3121.5C8—C13—H13119.3
C3—C4—C5121.7 (3)C12—C13—H13119.3
C3—C4—H4A119.1O1—C14—O2126.5 (2)
C5—C4—H4A119.1O1—C14—C8117.49 (18)
C6—C5—C4121.1 (3)O2—C14—C8115.9 (2)
C6—C5—H5119.5O3—C15—O4122.5 (2)
C4—C5—H5119.5O3—C15—C9122.5 (2)
C1—C6—C5117.3 (3)O4—C15—C9115.03 (19)
C1—C6—H6A121.4O5—C16—O6123.6 (2)
C5—C6—H6A121.4O5—C16—C11121.2 (2)
N2—C7—N1125.3 (2)O6—C16—C11115.1 (2)
N2—C7—S1122.65 (19)H7A—O7—H7B117.1
C7—N1—C1—C6−178.2 (2)C14—C8—C9—C154.4 (3)
C7—N1—C1—C2−0.3 (3)C8—C9—C10—C11−1.3 (3)
C6—C1—C2—C31.1 (4)C15—C9—C10—C11176.37 (19)
N1—C1—C2—C3−177.0 (2)C9—C10—C11—C120.5 (3)
C6—C1—C2—S1179.4 (2)C9—C10—C11—C16−178.6 (2)
N1—C1—C2—S11.4 (2)C10—C11—C12—C130.2 (3)
C7—S1—C2—C3176.6 (2)C16—C11—C12—C13179.2 (2)
C7—S1—C2—C1−1.59 (18)C9—C8—C13—C12−0.7 (3)
C1—C2—C3—C4−0.3 (4)C14—C8—C13—C12178.6 (2)
S1—C2—C3—C4−178.29 (19)C11—C12—C13—C8−0.1 (3)
C2—C3—C4—C5−0.4 (4)C13—C8—C14—O184.9 (3)
C3—C4—C5—C60.4 (4)C9—C8—C14—O1−95.7 (3)
N1—C1—C6—C5176.7 (2)C13—C8—C14—O2−92.1 (2)
C2—C1—C6—C5−1.1 (4)C9—C8—C14—O287.3 (3)
C4—C5—C6—C10.4 (4)C10—C9—C15—O3−171.0 (2)
C1—N1—C7—N2178.0 (2)C8—C9—C15—O36.6 (3)
C1—N1—C7—S1−1.0 (3)C10—C9—C15—O48.4 (3)
C2—S1—C7—N2−177.5 (2)C8—C9—C15—O4−173.95 (19)
C2—S1—C7—N11.47 (18)C10—C11—C16—O5−0.5 (3)
C13—C8—C9—C101.4 (3)C12—C11—C16—O5−179.5 (2)
C14—C8—C9—C10−178.0 (2)C10—C11—C16—O6178.40 (19)
C13—C8—C9—C15−176.3 (2)C12—C11—C16—O6−0.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···O7i0.821.862.674 (2)171
O6—H6···O2ii0.821.822.635 (2)171
N1—H1···O1iii0.861.852.698 (2)170
N2—H2A···O3iii0.862.032.838 (3)156
N2—H2B···O50.861.952.776 (3)160
O7—H7A···O1iv0.852.002.851 (2)177
O7—H7B···O2ii0.852.052.891 (2)170

Symmetry codes: (i) x+1/2, −y+1/2, z+1; (ii) x, y, z−1; (iii) x−1/2, −y+1/2, z−1; (iv) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2963).

References

  • Batı, H., Saraçoĝlu, H., Çalıs˛kan, N. & Soylu, S. (2005). Acta Cryst C61, 342–343. [PubMed]
  • Batista, R. M. F., Costa, S. P. G., Malheiro, E. L., Belsley, M. & Raposo, M. M. M. (2007). Tetrahedron, 63, 4258–4265.
  • Brandenburg, K. & Berndt, M. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Q., Yang, E.-C., Zhang, R.-W., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem 61, 1951–1962.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kovalska, V. B., Volkova, K. D., Losytskyy, M. Y., Tolmachev, O. I., Balanda, A. O. & Yarmoluk, S. M. (2006). Spectrochim. Acta Part A, 65, 271–277. [PubMed]
  • Leng, W. N., Zhou, Y. M., Xu, Q. H. & Liu, J. Z. (2001). Polymer, 42, 9253–9259.
  • Lynch, D. E., Cooper, C. J., Chauhan, V., Smith, G., Healy, P. & Parsons, S. (1999). Aust. J. Chem.52, 695–703.
  • Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem.51, 587–592.
  • Marconato, J. C., Bulhoes, L. O. & Temperini, M. L. (1998). Electrochim. Acta, 43, 771–780.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sieroń, L. & Bukowska-Strżyzewska, M. (1999). Acta Cryst. C55, 167–169.
  • Usman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41–m43.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography