PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1399.
Published online 2009 May 23. doi:  10.1107/S1600536809017541
PMCID: PMC2969576

N,N′-Di-8-quinolyladipamide

Abstract

The complete molecule of the title compound, C24H22N4O2, is generated by a crystallographic inversion centre located at the mid-point of the central C—C bond. The quinoline ring system and the hexyl chain are both essentially planar, and the dihedral angle between them is 46.30 (2)°. Intra­molecular N—H(...)N and C—H(...)O hydrogen bonds form five- and six-numbered rings, respectively. The crystal packing is stabilized by short C—H(...)O inter­actions.

Related literature

For details of the synthesis, see: Chen et al. (2007 [triangle]). For related structures, see: Chen et al. (2007 [triangle]); Wen et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1399-scheme1.jpg

Experimental

Crystal data

  • C24H22N4O2
  • M r = 398.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1399-efi1.jpg
  • a = 9.923 (2) Å
  • b = 9.184 (2) Å
  • c = 11.722 (3) Å
  • β = 110.530 (4)°
  • V = 1000.4 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 294 K
  • 0.24 × 0.20 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick,1996 [triangle]) T min = 0.980, T max = 0.990
  • 5622 measured reflections
  • 2048 independent reflections
  • 1274 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.120
  • S = 1.00
  • 2048 reflections
  • 140 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker 2001 [triangle]); cell refinement: SAINT (Bruker 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017541/fl2250sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017541/fl2250Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province, China (No. 2008BS0901) and the Natural Science Foundation of Shandong Province (No. Y2007B50).

supplementary crystallographic information

Comment

Recently, Chen et al. (2007) reported the syntheses and crystal structures of the flexible ligand N,N'-di(2-pyridyl)adipamide and its several Ag(I) complexes. Theses complexes form topologically promising zigzag, helical or sinusoidal chain architectures because the flexible ligand can adopt three different conformations. To investigate the influence of the terminal groups on crystal structure, and to obtain a more topologically promising coordination framework, we synthesized and carried out the structure determination of the title compound, (I) (Fig. 1).

The molecule sits on a center of symmetry passing through the central C12—C12ii bond [symmetry code: (ii): -x, -y, -z] (Fig. 1). All bond lengths and angles in (I) show normal values and are comparable to those of the related compounds, N,N'-di(2-pyridyl)adipamide (Chen et al., 2007), and N-(quinolin-8-yl)-2-(quinolin-8-yloxy)acetamide (Wen et al., 2006). The quinoline group is essentially planar, with a dihedral angle of 1.70 (3)° between the benzene ring (C4—C9) and pyridine ring (C1—C4/C9/N1). The C10—C12/C10A—C12A unit is also planar, with the dihedral angle to the quinoline system of 46.30 (2)°. Two intramolecular hydrogen bonds, viz. N2—H2A···N1 and C7—H7···O1 (Fig. 1 and Table 1), form five- and six-membered rings, respectively, and affect the conformation of the molecule. The crystal packing is stabilized by short C11—H11B···O1 interactions (Fig. 2 and Table 1).

Experimental

The title compound was synthesized by a reaction of adipoyl chloride and 8-aminoquinoline according to literature method (Chen et al., 2007). Colourless single cystals suitable for X-ray diffraction were obtained by slow evaporation from a methanol solution over a period of 7 d.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.95–0.99 Å, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.
Fig. 2.
The packing diagram of (I), viewed down the b axis.

Crystal data

C24H22N4O2F(000) = 420
Mr = 398.46Dx = 1.323 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1501 reflections
a = 9.923 (2) Åθ = 2.9–25.3°
b = 9.184 (2) ŵ = 0.09 mm1
c = 11.722 (3) ÅT = 294 K
β = 110.530 (4)°Column, colourless
V = 1000.4 (4) Å30.24 × 0.20 × 0.12 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer2048 independent reflections
Radiation source: fine-focus sealed tube1274 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick,1996)h = −11→12
Tmin = 0.980, Tmax = 0.990k = −11→9
5622 measured reflectionsl = −9→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0579P)2 + 0.1339P] where P = (Fo2 + 2Fc2)/3
2048 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.31418 (15)−0.13777 (14)0.23248 (14)0.0793 (5)
N10.61637 (15)0.28926 (17)0.28795 (13)0.0498 (4)
N20.41475 (15)0.08554 (16)0.26119 (14)0.0440 (4)
C10.7142 (2)0.3904 (2)0.30187 (19)0.0626 (6)
H10.68860.47230.25220.075*
C20.8543 (2)0.3835 (3)0.38633 (19)0.0649 (6)
H20.91920.45850.39170.078*
C30.8942 (2)0.2662 (2)0.46005 (17)0.0559 (5)
H30.98690.26020.51720.067*
C40.79507 (17)0.1532 (2)0.45011 (15)0.0438 (5)
C50.82757 (19)0.0257 (2)0.52156 (17)0.0518 (5)
H50.91780.01480.58160.062*
C60.72814 (19)−0.0807 (2)0.50313 (17)0.0529 (5)
H60.7518−0.16540.54940.063*
C70.59014 (19)−0.0659 (2)0.41559 (16)0.0475 (5)
H70.5236−0.14070.40440.057*
C80.55222 (17)0.05739 (19)0.34647 (15)0.0390 (4)
C90.65611 (17)0.16955 (18)0.36128 (14)0.0391 (4)
C100.30407 (18)−0.0079 (2)0.21278 (16)0.0455 (5)
C110.16598 (18)0.06244 (19)0.13495 (17)0.0477 (5)
H11A0.18830.14890.09750.057*
H11B0.11320.09300.18660.057*
C120.07120 (17)−0.03564 (19)0.03641 (16)0.0447 (5)
H12A0.0526−0.12450.07310.054*
H12B0.1214−0.0618−0.01830.054*
H2A0.4032 (19)0.1789 (11)0.2388 (17)0.057 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0648 (10)0.0370 (8)0.0939 (12)−0.0048 (7)−0.0250 (8)0.0065 (8)
N10.0425 (9)0.0574 (10)0.0425 (9)−0.0107 (8)0.0061 (7)0.0051 (8)
N20.0328 (8)0.0376 (9)0.0489 (9)−0.0033 (6)−0.0017 (7)0.0043 (7)
C10.0590 (13)0.0706 (14)0.0506 (12)−0.0212 (11)0.0096 (10)0.0115 (10)
C20.0532 (13)0.0802 (15)0.0543 (12)−0.0290 (11)0.0100 (10)−0.0005 (11)
C30.0382 (10)0.0782 (14)0.0444 (11)−0.0126 (10)0.0058 (8)−0.0063 (11)
C40.0344 (10)0.0587 (12)0.0354 (9)−0.0033 (8)0.0087 (8)−0.0069 (9)
C50.0343 (10)0.0684 (13)0.0427 (10)0.0058 (9)0.0012 (8)0.0007 (10)
C60.0446 (11)0.0561 (12)0.0479 (11)0.0067 (9)0.0037 (9)0.0073 (9)
C70.0396 (10)0.0478 (11)0.0475 (11)−0.0017 (8)0.0060 (9)0.0023 (9)
C80.0315 (9)0.0452 (10)0.0363 (9)−0.0001 (7)0.0068 (7)−0.0019 (8)
C90.0347 (9)0.0476 (10)0.0334 (9)−0.0005 (8)0.0099 (8)−0.0023 (8)
C100.0393 (10)0.0374 (10)0.0478 (10)−0.0042 (8)0.0005 (8)−0.0004 (8)
C110.0379 (10)0.0404 (10)0.0521 (11)−0.0023 (8)0.0000 (9)−0.0006 (9)
C120.0333 (10)0.0419 (10)0.0485 (10)−0.0030 (7)0.0014 (8)0.0006 (8)

Geometric parameters (Å, °)

O1—C101.213 (2)C5—C61.351 (3)
N1—C11.312 (2)C5—H50.9300
N1—C91.366 (2)C6—C71.400 (2)
N2—C101.352 (2)C6—H60.9300
N2—C81.404 (2)C7—C81.366 (2)
N2—H2A0.892 (9)C7—H70.9300
C1—C21.397 (3)C8—C91.424 (2)
C1—H10.9300C10—C111.500 (2)
C2—C31.350 (3)C11—C121.506 (2)
C2—H20.9300C11—H11A0.9700
C3—C41.407 (2)C11—H11B0.9700
C3—H30.9300C12—C12i1.519 (3)
C4—C51.410 (3)C12—H12A0.9700
C4—C91.415 (2)C12—H12B0.9700
C1—N1—C9117.01 (16)C8—C7—H7119.7
C10—N2—C8128.73 (15)C6—C7—H7119.7
C10—N2—H2A119.0 (12)C7—C8—N2124.88 (16)
C8—N2—H2A112.2 (12)C7—C8—C9119.34 (15)
N1—C1—C2124.37 (19)N2—C8—C9115.76 (15)
N1—C1—H1117.8N1—C9—C4122.70 (15)
C2—C1—H1117.8N1—C9—C8117.95 (15)
C3—C2—C1119.07 (18)C4—C9—C8119.36 (15)
C3—C2—H2120.5O1—C10—N2122.93 (16)
C1—C2—H2120.5O1—C10—C11122.42 (15)
C2—C3—C4119.71 (18)N2—C10—C11114.63 (15)
C2—C3—H3120.1C10—C11—C12113.62 (15)
C4—C3—H3120.1C10—C11—H11A108.8
C3—C4—C5123.78 (17)C12—C11—H11A108.8
C3—C4—C9117.12 (17)C10—C11—H11B108.8
C5—C4—C9119.08 (16)C12—C11—H11B108.8
C6—C5—C4120.26 (17)H11A—C11—H11B107.7
C6—C5—H5119.9C11—C12—C12i112.39 (18)
C4—C5—H5119.9C11—C12—H12A109.1
C5—C6—C7121.21 (17)C12i—C12—H12A109.1
C5—C6—H6119.4C11—C12—H12B109.1
C7—C6—H6119.4C12i—C12—H12B109.1
C8—C7—C6120.70 (17)H12A—C12—H12B107.9
C9—N1—C1—C2−0.3 (3)C1—N1—C9—C8−179.10 (17)
N1—C1—C2—C3−0.3 (3)C3—C4—C9—N1−0.7 (2)
C1—C2—C3—C40.5 (3)C5—C4—C9—N1−179.61 (16)
C2—C3—C4—C5178.89 (19)C3—C4—C9—C8179.22 (16)
C2—C3—C4—C90.0 (3)C5—C4—C9—C80.3 (2)
C3—C4—C5—C6−177.26 (18)C7—C8—C9—N1177.82 (16)
C9—C4—C5—C61.6 (3)N2—C8—C9—N1−3.5 (2)
C4—C5—C6—C7−1.7 (3)C7—C8—C9—C4−2.1 (2)
C5—C6—C7—C8−0.2 (3)N2—C8—C9—C4176.61 (15)
C6—C7—C8—N2−176.52 (17)C8—N2—C10—O1−5.4 (3)
C6—C7—C8—C92.1 (3)C8—N2—C10—C11173.11 (17)
C10—N2—C8—C7−14.2 (3)O1—C10—C11—C12−30.0 (3)
C10—N2—C8—C9167.19 (17)N2—C10—C11—C12151.44 (17)
C1—N1—C9—C40.8 (3)C10—C11—C12—C12i176.88 (18)

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···N10.89 (1)2.23 (2)2.676 (2)110 (2)
C7—H7···O10.932.332.902 (2)119
C11—H11B···O1ii0.972.663.134 (2)111

Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2250).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, H. C., Hu, H. L., Chan, Z. K., Yeh, C. W., Jia, H. W., Wu, C. P., Chen, J. D. & Wang, J. C. (2007). Cryst. Growth Des.7, 698–704.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wen, Y.-H., Xu, L.-L., Bi, S. & Zhang, S.-S. (2006). Acta Cryst. E62, o4476–o4477.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography