PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1230.
Published online 2009 May 7. doi:  10.1107/S1600536809016079
PMCID: PMC2969564

[(1R,3S)-3-(1,3-Dithian-2-yl)-2,2-dimethyl­cyclo­prop­yl]diphenyl­methanol

Abstract

In the title compound, C22H26OS2, prepared from (–)-1R-cis-caronaldehyde, the 1,3-dithiane ring adopts a chair conformation. An intra­molecular O—H(...)S hydrogen bond influences the mol­ecular conformation. In the crystal, weak inter­molecular C—H(...)S and C—H(...)O hydrogen bonds link the mol­ecules into chains propagating along [010].

Related literature

For the details of preparation of the analogous compound, (1R,3S)-methyl-3-(1,3-dithian-2-yl)-2,2-dimethyl­cyclo­propane carboxyl­ate, see: Mazzanti et al. (1997 [triangle]); Veyrat et al. (1997 [triangle]); Perollier et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1230-scheme1.jpg

Experimental

Crystal data

  • C22H26OS2
  • M r = 370.55
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1230-efi1.jpg
  • a = 9.5578 (19) Å
  • b = 11.199 (2) Å
  • c = 9.6512 (19) Å
  • β = 101.14 (3)°
  • V = 1013.6 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 123 K
  • 0.40 × 0.40 × 0.30 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.900, T max = 0.924
  • 4303 measured reflections
  • 4303 independent reflections
  • 2920 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.084
  • S = 0.84
  • 4303 reflections
  • 229 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.30 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1878 Friedel pairs
  • Flack parameter: 0.05 (7)

Data collection: RAPID-AUTO (Rigaku, 2000 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku, 2000 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016079/cv2542sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016079/cv2542Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the National Natural Science Foundation of China (grant Nos. 20472111 and20742004) is gratefully acknowledged.

supplementary crystallographic information

Comment

We designed and prepared a novel type of chiral dithiane alcohol based with chiral cis-cyclopropane from (-)-1R-cis-Caronaldehyde. Details of preparation of the analogue compound were descussed in the literature (Mazzanti et al., 1997; Veyrat et al., 1997; Perollier et al., 1997).

In this paper, the crystal structure of the title compound, (I), is reported. In (I) (Fig. 1), the 1,3-dithiane ring adopts a chair conformation. Intramolecular O—H···S hydrogen bond (Table 1) influences the molecular conformation. In the crystal, weak intermolecular C—H···O and C—H···S hydrogen bonds (Table 1) link the molecules into chains propagated in direction [010].

Experimental

Magnesium (0.4 g, 15.6 mmol) was added to 15 ml of anhydrous THF. A solution of bromobenzene (2.0 g, 12.5 mmol in 5 ml of THF) was added dropwise into the above mixture. Once the reaction began, the rest of the bromobenzene solution was added at a rate that maintained a gentle reflux. When the addition of the bromobenzene solution was complete, the mixture was refluxed for 20 min, and was then cooled to 273 K. (1R,3S)-Methyl-3-(1,3-dithian-2-yl)-2,2-dimethylcyclopropane carboxylate (5 mmol) (Mazzanti et al., 1997; Veyrat et al., 1997; Perollier et al., 1997) was dissolved in 5 ml of anhydrous THF and added to the prepared Grignard mixture. After the solution of carboxylate had been added, the resulting mixture was stirred at room temperature for an additional 24 h. The reaction was quenched with saturated NH4Cl (aq), and the mixture was extracted several times with Et2O. The organic phases were combined, dried over MgSO4 and concentrated under reduced pressure. The residual yellow solid was purified by recrystallization in Et2O to yield compound (I) as colourless crystals. Colourless solid, m.p. 427 K; [α]20D =+19.93 (c 0.03, CHCl3).

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms with C—H = 0.95 (Caromatic), 0.98 (Cmethyl), 0.99 (CH2) and 1.00 (CH) Å and O—H = 0.84 Å, and with Uiso (H) = 1.5Ueq (Cmethy,O) and 1.2Ueq (other C).

Figures

Fig. 1.
The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids for non-H atoms.

Crystal data

C22H26OS2F(000) = 396
Mr = 370.55Dx = 1.214 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7560 reflections
a = 9.5578 (19) Åθ = 2.2–27.5°
b = 11.199 (2) ŵ = 0.27 mm1
c = 9.6512 (19) ÅT = 123 K
β = 101.14 (3)°Block, colourless
V = 1013.6 (4) Å30.40 × 0.40 × 0.30 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID IP diffractometer4303 independent reflections
Radiation source: fine-focus sealed tube2920 reflections with I > 2σ(I)
graphiteRint = 0.0000
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω scansh = −12→12
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −14→14
Tmin = 0.900, Tmax = 0.924l = −12→12
4303 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038w = 1/[σ2(Fo2) + (0.0379P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 0.84Δρmax = 0.28 e Å3
4303 reflectionsΔρmin = −0.30 e Å3
229 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.046 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1878 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.05 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6857 (3)0.2287 (2)0.2178 (3)0.0254 (6)
H10.65170.28250.13550.030*
C20.6466 (3)0.2775 (2)0.3516 (3)0.0287 (7)
C30.8003 (3)0.2893 (2)0.3280 (3)0.0238 (6)
H30.82460.37170.30050.029*
C40.5595 (3)0.3923 (3)0.3379 (3)0.0462 (9)
H4A0.45770.37270.31760.069*
H4B0.58270.44070.26090.069*
H4C0.58220.43730.42650.069*
C50.6172 (3)0.1950 (3)0.4668 (3)0.0369 (8)
H5A0.51560.17450.44920.055*
H5B0.64320.23500.55850.055*
H5C0.67390.12200.46740.055*
C60.9233 (2)0.2264 (2)0.4217 (3)0.0236 (6)
H60.88670.15490.46560.028*
C71.1962 (3)0.1241 (3)0.4492 (3)0.0351 (7)
H7A1.16320.05290.49440.042*
H7B1.27510.09870.40280.042*
C81.2536 (3)0.2153 (2)0.5636 (3)0.0354 (8)
H8A1.34040.18270.62450.042*
H8B1.28110.28870.51840.042*
C91.1470 (3)0.2472 (3)0.6542 (3)0.0354 (7)
H9A1.19580.29400.73660.042*
H9B1.11090.17290.69020.042*
C100.6776 (3)0.0972 (2)0.1726 (3)0.0235 (6)
C110.7437 (3)0.0754 (2)0.0414 (3)0.0258 (6)
C120.7434 (3)−0.0429 (3)−0.0102 (3)0.0389 (8)
H120.6995−0.10440.03410.047*
C130.8053 (3)−0.0705 (3)−0.1232 (3)0.0479 (9)
H130.8059−0.1507−0.15510.057*
C140.8676 (3)0.0196 (4)−0.1912 (3)0.0522 (10)
H140.90910.0014−0.27050.063*
C150.8679 (4)0.1346 (3)−0.1422 (4)0.0537 (10)
H150.91000.1958−0.18850.064*
C160.8079 (3)0.1635 (3)−0.0258 (3)0.0404 (8)
H160.81080.24350.00740.048*
C170.5212 (3)0.0589 (2)0.1427 (3)0.0259 (6)
C180.4713 (3)−0.0319 (3)0.2171 (3)0.0345 (7)
H180.5356−0.07370.28800.041*
C190.3262 (3)−0.0628 (3)0.1886 (3)0.0412 (8)
H190.2933−0.12680.23850.049*
C200.2309 (3)−0.0007 (3)0.0882 (3)0.0392 (8)
H200.1323−0.02030.07130.047*
C210.2790 (3)0.0895 (3)0.0129 (3)0.0410 (8)
H210.21410.1313−0.05750.049*
C220.4234 (3)0.1196 (3)0.0402 (3)0.0370 (8)
H220.45590.1825−0.01170.044*
O10.75071 (18)0.02068 (15)0.28301 (18)0.0294 (5)
H20.83810.03240.28630.035*
S11.05026 (7)0.17887 (6)0.31479 (7)0.02959 (18)
S20.99674 (7)0.33324 (6)0.55984 (8)0.0331 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0253 (14)0.0246 (14)0.0234 (16)0.0024 (12)−0.0025 (12)0.0004 (11)
C20.0194 (14)0.0317 (15)0.0309 (17)0.0023 (12)−0.0056 (12)−0.0089 (13)
C30.0195 (13)0.0240 (14)0.0248 (15)0.0010 (11)−0.0030 (11)−0.0005 (11)
C40.0302 (17)0.0495 (19)0.053 (2)0.0138 (15)−0.0065 (15)−0.0172 (16)
C50.0221 (14)0.058 (2)0.0314 (16)−0.0069 (14)0.0060 (12)−0.0125 (16)
C60.0179 (13)0.0270 (14)0.0247 (15)0.0028 (11)0.0008 (11)−0.0022 (11)
C70.0208 (15)0.0375 (17)0.045 (2)−0.0002 (12)0.0011 (13)−0.0007 (14)
C80.0220 (15)0.0344 (18)0.046 (2)−0.0034 (13)−0.0026 (14)0.0076 (14)
C90.0328 (16)0.0335 (16)0.0338 (18)−0.0009 (14)−0.0089 (14)−0.0005 (13)
C100.0230 (14)0.0218 (14)0.0230 (15)0.0046 (12)−0.0021 (11)0.0027 (11)
C110.0221 (14)0.0318 (15)0.0216 (14)0.0074 (13)−0.0008 (11)0.0014 (12)
C120.0363 (18)0.0429 (18)0.0362 (18)0.0034 (15)0.0036 (14)−0.0071 (15)
C130.0389 (19)0.068 (3)0.036 (2)0.0096 (18)0.0057 (16)−0.0185 (19)
C140.0364 (19)0.093 (3)0.0271 (18)0.021 (2)0.0066 (15)−0.013 (2)
C150.052 (2)0.069 (3)0.047 (2)0.0117 (18)0.0268 (18)0.0166 (18)
C160.0431 (18)0.0439 (19)0.0360 (18)0.0079 (17)0.0121 (14)0.0093 (16)
C170.0306 (15)0.0253 (15)0.0207 (14)0.0019 (12)0.0027 (12)−0.0046 (12)
C180.0322 (16)0.0349 (17)0.0321 (17)−0.0011 (14)−0.0044 (13)0.0055 (13)
C190.0405 (19)0.0399 (18)0.0406 (19)−0.0124 (15)0.0013 (15)0.0031 (15)
C200.0277 (16)0.050 (2)0.0367 (19)−0.0058 (15)−0.0003 (14)−0.0071 (15)
C210.0308 (17)0.051 (2)0.0378 (19)0.0016 (16)−0.0032 (14)0.0019 (15)
C220.0334 (17)0.0415 (18)0.0338 (18)−0.0031 (14)0.0005 (14)0.0093 (14)
O10.0285 (11)0.0267 (10)0.0287 (11)0.0028 (8)−0.0053 (9)0.0036 (9)
S10.0226 (3)0.0370 (4)0.0294 (4)0.0013 (3)0.0058 (3)0.0009 (3)
S20.0289 (4)0.0306 (4)0.0356 (4)0.0023 (3)−0.0043 (3)−0.0068 (4)

Geometric parameters (Å, °)

C1—C21.515 (4)C9—H9B0.9900
C1—C31.531 (3)C10—O11.439 (3)
C1—C101.533 (4)C10—C171.529 (4)
C1—H11.0000C10—C111.540 (4)
C2—C51.513 (4)C11—C161.387 (4)
C2—C41.523 (4)C11—C121.415 (4)
C2—C31.536 (4)C12—C131.372 (4)
C3—C61.511 (3)C12—H120.9500
C3—H31.0000C13—C141.398 (5)
C4—H4A0.9800C13—H130.9500
C4—H4B0.9800C14—C151.371 (5)
C4—H4C0.9800C14—H140.9500
C5—H5A0.9800C15—C161.395 (4)
C5—H5B0.9800C15—H150.9500
C5—H5C0.9800C16—H160.9500
C6—S11.818 (3)C17—C181.382 (4)
C6—S21.827 (3)C17—C221.399 (4)
C6—H61.0000C18—C191.404 (4)
C7—C81.526 (4)C18—H180.9500
C7—S11.818 (3)C19—C201.382 (4)
C7—H7A0.9900C19—H190.9500
C7—H7B0.9900C20—C211.375 (4)
C8—C91.508 (4)C20—H200.9500
C8—H8A0.9900C21—C221.396 (4)
C8—H8B0.9900C21—H210.9500
C9—S21.821 (3)C22—H220.9500
C9—H9A0.9900O1—H20.8400
C2—C1—C360.55 (17)S2—C9—H9A109.0
C2—C1—C10125.6 (2)C8—C9—H9B109.0
C3—C1—C10127.8 (2)S2—C9—H9B109.0
C2—C1—H1111.3H9A—C9—H9B107.8
C3—C1—H1111.3O1—C10—C17106.8 (2)
C10—C1—H1111.3O1—C10—C1111.8 (2)
C5—C2—C1121.2 (2)C17—C10—C1108.5 (2)
C5—C2—C4113.8 (3)O1—C10—C11107.24 (19)
C1—C2—C4116.8 (2)C17—C10—C11110.0 (2)
C5—C2—C3118.7 (2)C1—C10—C11112.4 (2)
C1—C2—C360.24 (18)C16—C11—C12118.2 (3)
C4—C2—C3115.9 (2)C16—C11—C10124.1 (2)
C6—C3—C1125.3 (2)C12—C11—C10117.7 (2)
C6—C3—C2121.8 (2)C13—C12—C11121.2 (3)
C1—C3—C259.21 (17)C13—C12—H12119.4
C6—C3—H3113.3C11—C12—H12119.4
C1—C3—H3113.3C12—C13—C14119.9 (3)
C2—C3—H3113.3C12—C13—H13120.0
C2—C4—H4A109.5C14—C13—H13120.0
C2—C4—H4B109.5C15—C14—C13119.2 (3)
H4A—C4—H4B109.5C15—C14—H14120.4
C2—C4—H4C109.5C13—C14—H14120.4
H4A—C4—H4C109.5C14—C15—C16121.5 (3)
H4B—C4—H4C109.5C14—C15—H15119.3
C2—C5—H5A109.5C16—C15—H15119.3
C2—C5—H5B109.5C11—C16—C15120.0 (3)
H5A—C5—H5B109.5C11—C16—H16120.0
C2—C5—H5C109.5C15—C16—H16120.0
H5A—C5—H5C109.5C18—C17—C22118.3 (3)
H5B—C5—H5C109.5C18—C17—C10122.1 (2)
C3—C6—S1108.90 (19)C22—C17—C10119.5 (2)
C3—C6—S2106.04 (18)C17—C18—C19120.4 (3)
S1—C6—S2113.65 (13)C17—C18—H18119.8
C3—C6—H6109.4C19—C18—H18119.8
S1—C6—H6109.4C20—C19—C18120.4 (3)
S2—C6—H6109.4C20—C19—H19119.8
C8—C7—S1114.18 (19)C18—C19—H19119.8
C8—C7—H7A108.7C21—C20—C19119.9 (3)
S1—C7—H7A108.7C21—C20—H20120.1
C8—C7—H7B108.7C19—C20—H20120.1
S1—C7—H7B108.7C20—C21—C22119.8 (3)
H7A—C7—H7B107.6C20—C21—H21120.1
C9—C8—C7112.9 (2)C22—C21—H21120.1
C9—C8—H8A109.0C21—C22—C17121.2 (3)
C7—C8—H8A109.0C21—C22—H22119.4
C9—C8—H8B109.0C17—C22—H22119.4
C7—C8—H8B109.0C10—O1—H2105.8
H8A—C8—H8B107.8C7—S1—C6101.43 (13)
C8—C9—S2113.0 (2)C9—S2—C699.98 (13)
C8—C9—H9A109.0
C3—C1—C2—C5−107.5 (3)C1—C10—C11—C12179.7 (2)
C10—C1—C2—C510.0 (4)C16—C11—C12—C130.4 (4)
C3—C1—C2—C4106.0 (3)C10—C11—C12—C13−177.4 (3)
C10—C1—C2—C4−136.5 (3)C11—C12—C13—C14−1.4 (4)
C10—C1—C2—C3117.5 (3)C12—C13—C14—C151.1 (5)
C2—C1—C3—C6109.2 (3)C13—C14—C15—C160.1 (5)
C10—C1—C3—C6−4.9 (4)C12—C11—C16—C150.9 (4)
C10—C1—C3—C2−114.1 (3)C10—C11—C16—C15178.5 (3)
C5—C2—C3—C6−3.5 (4)C14—C15—C16—C11−1.1 (5)
C1—C2—C3—C6−115.0 (3)O1—C10—C17—C181.3 (3)
C4—C2—C3—C6137.5 (3)C1—C10—C17—C18−119.4 (3)
C5—C2—C3—C1111.5 (3)C11—C10—C17—C18117.4 (3)
C4—C2—C3—C1−107.5 (3)O1—C10—C17—C22179.1 (2)
C1—C3—C6—S171.5 (3)C1—C10—C17—C2258.5 (3)
C2—C3—C6—S1144.1 (2)C11—C10—C17—C22−64.8 (3)
C1—C3—C6—S2−165.9 (2)C22—C17—C18—C190.8 (4)
C2—C3—C6—S2−93.3 (3)C10—C17—C18—C19178.6 (3)
S1—C7—C8—C966.4 (3)C17—C18—C19—C20−1.7 (5)
C7—C8—C9—S2−69.4 (3)C18—C19—C20—C211.9 (5)
C2—C1—C10—O1−51.7 (3)C19—C20—C21—C22−1.3 (5)
C3—C1—C10—O126.2 (4)C20—C21—C22—C170.4 (5)
C2—C1—C10—C1765.9 (3)C18—C17—C22—C21−0.2 (4)
C3—C1—C10—C17143.8 (3)C10—C17—C22—C21−178.1 (3)
C2—C1—C10—C11−172.3 (2)C8—C7—S1—C6−55.9 (2)
C3—C1—C10—C11−94.4 (3)C3—C6—S1—C7173.11 (18)
O1—C10—C11—C16−121.1 (3)S2—C6—S1—C755.16 (17)
C17—C10—C11—C16123.0 (3)C8—C9—S2—C661.1 (2)
C1—C10—C11—C162.1 (3)C3—C6—S2—C9−176.75 (19)
O1—C10—C11—C1256.5 (3)S1—C6—S2—C9−57.17 (18)
C17—C10—C11—C12−59.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H2···S10.842.583.330 (2)149
C7—H7A···S2i0.992.893.736 (3)144
C9—H9A···O1ii0.992.603.236 (3)122

Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) −x+2, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2542).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Mazzanti, M., Marchon, J. C., Shang, M. Y., Scheidt, W. R., Jia, S. L. & Shelnutt, J. A. (1997). J. Am. Chem. Soc.119, 12400–12401.
  • Perollier, C., Pecaut, J., Ramasseul, R. & Marchon, J. C. (1997). Bull. Soc. Chim. Fr.134, 517–523.
  • Rigaku (2000). RAPID-AUTO and CrystalStructure Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Veyrat, M., Fantin, L., Desmoulins, S., Petitjean, A., Mazzanti, M., Ramasseul, R., Marchon, J. C. & Bau, R. (1997). Bull. Soc. Chim. Fr.134, 703–711.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography