PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1381.
Published online 2009 May 23. doi:  10.1107/S1600536809018923
PMCID: PMC2969563

Methyl 4-anilino-3-nitro­benzoate

Abstract

In the mol­ecule of the title compound, C14H12N2O4, the aromatic rings are oriented at a dihedral angle of 51.50 (4)°. An intra­molecular N—H(...)O inter­action results in the formation of a six-membered ring having an envelope conformation. In the crystal structure, inter­molecular N—H(...)O inter­actions link the mol­ecules into centrosymmetric dimers. π–π contacts between the benzene rings [centroid–centroid distance = 3.708 (1) Å] may further stabilize the structure.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For the synthesis, see: Schelz (1978 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1381-scheme1.jpg

Experimental

Crystal data

  • C14H12N2O4
  • M r = 272.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1381-efi1.jpg
  • a = 11.641 (2) Å
  • b = 16.349 (3) Å
  • c = 7.2490 (14) Å
  • β = 107.50 (3)°
  • V = 1315.8 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 294 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.970, T max = 0.990
  • 2569 measured reflections
  • 2367 independent reflections
  • 1335 reflections with I > 2σ(I)
  • R int = 0.026
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.178
  • S = 1.00
  • 2367 reflections
  • 175 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809018923/hk2689sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018923/hk2689Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of benzoic acid are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C7-C12) are, of course, planar and they are oriented at a dihedral angle of A/B = 51.50 (4)°. Intramolecular N-H···O interaction (Table 1) results in the formation of a six-membered ring C (O1/N1/N2/C7/C12/H1A) having envelope conformation with atom O1 displaced by 0.125 (4) Å from the plane of the other ring atoms.

In the crystal structure, intra- and intermolecular N-H···O interactions (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the benzene rings, Cg2—Cg2i [symmetry code: (i) x, 1/2 - y, z - 1/2, where Cg2 is centroid of the ring B (C7-C12)] may further stabilize the structure, with centroid-centroid distance of 3.708 (1) Å.

Experimental

For the preparation of the title compound, methyl 4-chloro-3-nitrobenzoate (5.0 g, 23 mmol) was heated in distilled aniline (10 ml) for 18 h at 393 K. After the reaction was completed, ethanol (50 ml) was added, at room temperature. The yellow precipitate was washed with cold ethanol (2 × 20 ml), and then dried (yield; 4.7 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H12N2O4F(000) = 568
Mr = 272.26Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.641 (2) Åθ = 10–12°
b = 16.349 (3) ŵ = 0.10 mm1
c = 7.2490 (14) ÅT = 294 K
β = 107.50 (3)°Block, colorless
V = 1315.8 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1335 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
graphiteθmax = 25.2°, θmin = 1.8°
ω/2θ scansh = −13→13
Absorption correction: ψ scan (North et al., 1968)k = −19→0
Tmin = 0.970, Tmax = 0.990l = 0→8
2569 measured reflections3 standard reflections every 120 min
2367 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.178w = 1/[σ2(Fo2) + (0.08P)2 + 0.4P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2367 reflectionsΔρmax = 0.33 e Å3
175 parametersΔρmin = −0.44 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.0837 (2)0.05896 (17)0.1085 (4)0.078
O20.2328 (2)0.11328 (16)0.2971 (4)0.0677 (9)
O30.1608 (3)0.48217 (18)0.1788 (5)0.0848 (10)
O40.2843 (2)0.39247 (16)0.3690 (4)0.0648 (8)
N1−0.1155 (2)0.14101 (18)−0.0669 (4)0.0501 (8)
H1A−0.08360.0932−0.04460.060*
N20.1335 (3)0.11733 (17)0.1801 (5)0.0479 (8)
C1−0.4811 (4)0.1408 (3)−0.3820 (7)0.0754 (14)
H1B−0.56210.1397−0.45380.091*
C2−0.4423 (4)0.1887 (3)−0.2185 (7)0.0721 (13)
H2A−0.49730.2200−0.17890.087*
C3−0.3218 (3)0.1902 (3)−0.1139 (6)0.0575 (11)
H3A−0.29590.2222−0.00310.069*
C4−0.2393 (3)0.1441 (2)−0.1731 (5)0.0440 (9)
C5−0.2794 (3)0.0959 (2)−0.3384 (5)0.0504 (10)
H5A−0.22540.0647−0.38080.061*
C6−0.3991 (4)0.0951 (3)−0.4367 (6)0.0638 (12)
H6A−0.42590.0621−0.54570.077*
C7−0.0420 (3)0.2050 (2)0.0031 (5)0.0378 (8)
C8−0.0795 (3)0.2868 (2)−0.0439 (5)0.0460 (9)
H8A−0.15670.2963−0.12600.055*
C9−0.0075 (3)0.3514 (2)0.0258 (5)0.0465 (9)
H9A−0.03630.4039−0.01010.056*
C100.1095 (3)0.3414 (2)0.1510 (5)0.0431 (9)
C110.1507 (3)0.2631 (2)0.1962 (5)0.0416 (9)
H11A0.22840.25490.27770.050*
C120.0786 (3)0.1958 (2)0.1226 (5)0.0385 (8)
C130.1830 (4)0.4131 (2)0.2287 (6)0.0509 (10)
C140.3604 (4)0.4579 (3)0.4546 (7)0.0886 (16)
H14A0.42930.43720.55280.133*
H14B0.31740.49540.51160.133*
H14C0.38650.48580.35760.133*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0640.0600.0910.006−0.0050.000
O20.0506 (16)0.0573 (18)0.075 (2)0.0069 (14)−0.0122 (15)−0.0036 (15)
O30.090 (2)0.0424 (18)0.108 (3)−0.0121 (16)0.009 (2)0.0030 (17)
O40.0496 (16)0.0559 (18)0.078 (2)−0.0124 (13)0.0026 (15)−0.0116 (15)
N10.0426 (17)0.0421 (17)0.056 (2)−0.0071 (14)0.0013 (15)−0.0022 (15)
N20.0406 (17)0.0336 (16)0.058 (2)−0.0125 (13)−0.0025 (16)−0.0141 (14)
C10.045 (2)0.082 (3)0.082 (3)−0.021 (2)−0.007 (2)0.010 (3)
C20.044 (2)0.086 (3)0.086 (4)−0.006 (2)0.017 (2)−0.007 (3)
C30.044 (2)0.071 (3)0.053 (3)−0.010 (2)0.0090 (19)−0.012 (2)
C40.040 (2)0.044 (2)0.042 (2)−0.0085 (17)0.0045 (17)0.0034 (17)
C50.053 (2)0.046 (2)0.046 (2)−0.0152 (18)0.0058 (19)−0.0013 (18)
C60.061 (3)0.071 (3)0.049 (3)−0.021 (2)0.000 (2)−0.001 (2)
C70.0369 (18)0.043 (2)0.0349 (19)−0.0075 (16)0.0124 (15)−0.0044 (16)
C80.039 (2)0.054 (2)0.043 (2)−0.0007 (17)0.0093 (17)0.0032 (18)
C90.047 (2)0.038 (2)0.054 (2)0.0001 (17)0.0157 (18)0.0050 (18)
C100.047 (2)0.044 (2)0.042 (2)−0.0069 (17)0.0171 (17)−0.0040 (17)
C110.0335 (18)0.051 (2)0.039 (2)−0.0018 (16)0.0094 (16)−0.0036 (17)
C120.0343 (18)0.0368 (19)0.044 (2)−0.0010 (15)0.0115 (16)−0.0030 (16)
C130.058 (2)0.042 (2)0.057 (3)−0.0085 (19)0.022 (2)−0.0058 (19)
C140.068 (3)0.090 (4)0.096 (4)−0.037 (3)0.006 (3)−0.029 (3)

Geometric parameters (Å, °)

O1—N21.155 (3)C5—C61.361 (5)
O2—N21.213 (3)C5—H5A0.9300
O3—C131.190 (5)C6—H6A0.9300
O4—C131.348 (4)C7—C81.416 (5)
O4—C141.409 (5)C7—C121.419 (4)
N1—C71.349 (4)C8—C91.348 (5)
N1—C41.416 (4)C8—H8A0.9300
N1—H1A0.8600C9—C101.401 (5)
N2—C121.438 (4)C9—H9A0.9300
C1—C61.361 (6)C10—C111.372 (5)
C1—C21.378 (6)C10—C131.461 (5)
C1—H1B0.9300C11—C121.389 (4)
C2—C31.379 (5)C11—H11A0.9300
C2—H2A0.9300C14—H14A0.9600
C3—C41.387 (5)C14—H14B0.9600
C3—H3A0.9300C14—H14C0.9600
C4—C51.392 (5)
C13—O4—C14115.7 (3)N1—C7—C12123.1 (3)
C7—N1—C4127.1 (3)C8—C7—C12115.0 (3)
C7—N1—H1A116.5C9—C8—C7122.6 (3)
C4—N1—H1A116.5C9—C8—H8A118.7
O1—N2—O2120.9 (3)C7—C8—H8A118.7
O1—N2—C12119.2 (3)C8—C9—C10121.6 (3)
O2—N2—C12119.9 (3)C8—C9—H9A119.2
C6—C1—C2119.0 (4)C10—C9—H9A119.2
C6—C1—H1B120.5C11—C10—C9117.8 (3)
C2—C1—H1B120.5C11—C10—C13122.3 (3)
C1—C2—C3119.9 (4)C9—C10—C13119.9 (3)
C1—C2—H2A120.1C10—C11—C12121.3 (3)
C3—C2—H2A120.1C10—C11—H11A119.3
C2—C3—C4120.3 (4)C12—C11—H11A119.3
C2—C3—H3A119.8C11—C12—C7121.5 (3)
C4—C3—H3A119.8C11—C12—N2115.5 (3)
C3—C4—C5119.3 (3)C7—C12—N2122.9 (3)
C3—C4—N1122.6 (3)O3—C13—O4121.9 (4)
C5—C4—N1118.1 (3)O3—C13—C10126.6 (4)
C6—C5—C4118.7 (4)O4—C13—C10111.6 (3)
C6—C5—H5A120.6O4—C14—H14A109.5
C4—C5—H5A120.6O4—C14—H14B109.5
C5—C6—C1122.7 (4)H14A—C14—H14B109.5
C5—C6—H6A118.7O4—C14—H14C109.5
C1—C6—H6A118.7H14A—C14—H14C109.5
N1—C7—C8121.8 (3)H14B—C14—H14C109.5
C6—C1—C2—C30.3 (7)C13—C10—C11—C12179.1 (4)
C1—C2—C3—C40.5 (7)C10—C11—C12—C7−2.3 (5)
C2—C3—C4—C5−0.5 (6)C10—C11—C12—N2179.4 (3)
C2—C3—C4—N1−177.5 (4)N1—C7—C12—C11−178.3 (3)
C7—N1—C4—C3−48.9 (5)C8—C7—C12—C113.8 (5)
C7—N1—C4—C5134.0 (4)N1—C7—C12—N2−0.1 (5)
C3—C4—C5—C6−0.3 (6)C8—C7—C12—N2−178.0 (3)
N1—C4—C5—C6176.9 (3)O1—N2—C12—C11−171.9 (4)
C4—C5—C6—C11.2 (6)O2—N2—C12—C115.4 (5)
C2—C1—C6—C5−1.2 (7)O1—N2—C12—C79.8 (6)
C4—N1—C7—C8−7.9 (6)O2—N2—C12—C7−172.9 (3)
C4—N1—C7—C12174.4 (3)C14—O4—C13—O31.2 (6)
N1—C7—C8—C9179.6 (4)C14—O4—C13—C10−179.3 (4)
C12—C7—C8—C9−2.5 (5)C11—C10—C13—O3169.8 (4)
C7—C8—C9—C10−0.3 (6)C9—C10—C13—O3−10.4 (6)
C8—C9—C10—C112.1 (6)C11—C10—C13—O4−9.8 (5)
C8—C9—C10—C13−177.8 (3)C9—C10—C13—O4170.1 (3)
C9—C10—C11—C12−0.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.012.650 (4)130
N1—H1A···O1i0.862.533.314 (4)152

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2689).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Schelz, D. (1978). Helv. Chim. Acta, 61, 2452–2462.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography