PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m680.
Published online 2009 May 23. doi:  10.1107/S1600536809018364
PMCID: PMC2969557

Dibromido[(tert-butyl­amino)dimeth­yl(piperidin-1-ylmeth­yl)silane-κ2 N,N′]zinc(II)

Abstract

The title compound, [ZnBr2(C12H28N2Si)], is an example of a neutral coordination compound of a bidentate ligand to a metal centre with the Zn atom being coordinated by two Br and two N atoms, yielding a slightly distorted tetra­hedral coordination environment.

Related literature

For the synthesis and structure of cis-(2-amino-1,1-dimethyl­ethylamine)dichloro­palladium(II) ethanol hemisolvate, see: Farrugia et al. (2001 [triangle]). For niobium and tantalum complexes of silylamides, see: Herrmann et al. (1992 [triangle]). For the synthesis and structure of tBu2Si=N-SiCltBu2, see: Lerner et al. (2005 [triangle]); for syntheses, structures and properties of chiral zinc halide catalysts, see: Mimoun et al. (1999 [triangle]). For the structure and reactivity of lithia­ted benzyl­silanes, see: Ott et al. (2008 [triangle]). For syntheses and structures of bis­{[diphen­yl(piperidinometh­yl)­sil­yl]meth­yl}cadmium and -magnesium, see: Strohmann & Schildbach (2002 [triangle]). For a highly diastereomerically enriched, silyl-substituted alkyl lithium, see: Strohmann et al. (2005 [triangle]). For the synthesis and structure of a monolithia­ted allyl­silane and its related 1,3-dilithia­ted allyl­silane, see: Strohmann et al. (2006 [triangle]). For the synthesis and structure of a lithia­ted [(benzyl­silyl)meth­yl]amine, see: Strohmann et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m680-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C12H28N2Si)]
  • M r = 453.64
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m680-efi1.jpg
  • a = 12.0284 (4) Å
  • b = 10.6505 (3) Å
  • c = 14.5633 (5) Å
  • β = 109.752 (4)°
  • V = 1755.91 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.01 mm−1
  • T = 123 K
  • 0.40 × 0.20 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur S diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.698, T max = 1.000 (expected range = 0.210–0.301)
  • 17826 measured reflections
  • 3440 independent reflections
  • 2673 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.035
  • S = 1.04
  • 3440 reflections
  • 172 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809018364/fi2078sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018364/fi2078Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft. The authors also acknowledge Wacker Chemie AG and Chemetall for providing special chemicals.

supplementary crystallographic information

Comment

The title compound, the adduct of the silazane ligand and zinc bromide crystallized from acetonitrile in the monoclinic crystal system, space group P21/c. The H atom H1n was refined freely. It is connected to N1 with a bond length of 0.853 (21) Å which is in the expected range for N—H bonds. Additionally, H1N is forming a weak intermolecular hydrogen bond to Br1i (i: –x, –y + 1, –z + 1). The H1···Br1i distance (2.828 (22) Å) and the N1—H1N—Br1i angle (166.1 (20) Å) are in the typical ranges of such hydrogen bonds (Farrugia et al., 2001). With a value of 1.791 (2) Å, the Si—N bond length is in the upper range of other known systems and is very close to the sum of the covalent radii of silicon and nitrogen (1.86 Å) (Lerner et al., 2005; Herrmann et al., 1992). The bond lengths of 2.128 (2) Å for N1—Zn and 2.110 (2) Å for N2—Zn are similar to other reported dative zinc-nitrogen bonds (Mimoun et al., 1999). The structure of the title compound is a neutral coordination compound of a bidentate ligand and zinc(II) bromide forming a five-membered ring with a typical envelope conformation similar to other known metalla heterocycles (Strohmann et al. 2002, 2005, 2006; Strohmann & Schildbach 2002; Ott et al. 2008). The tip of the envelope is formed by the Si atom with a distance of 0.8312 (7) Å to a least-squares plane through Zn, N1, N2, C3 and Si. The title compound may be regarded as a comparative model structure for a deprotonation transition state as the silazane ligand can also be deprotonated by more reactive organozinc reagents. Thereby new metal silazane compounds are formed which themselves are interesting as deprotonation or alkylation reagents in organic synthesis.

Experimental

To 0.38 g (1.7 mmol) dry zinc(II) bromide dissolved in 10 ml dry acetonitrile, 0.38 g (1.7 mmol) N-tert-butyl-1,1-dimethyl-1-(piperidin-1-ylmethyl)silanamine were added and stored at room temperature. After 24 h a colourless crystalline solid of the title compound suitable for single-crystal x-ray studies had formed.

Refinement

The H atoms were refined in their ideal geometric positions using the riding model approximation with Uiso(H) = 1.5Ueq(C) for methyl H atoms and of Uiso(H) = 1.2Ueq(C) for all other H atoms except atom H1n (bonded to N1) which was refined freely.

Figures

Fig. 1.
Plot of the asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.

Crystal data

[ZnBr2(C12H28N2Si)]F(000) = 912
Mr = 453.64Dx = 1.716 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9282 reflections
a = 12.0284 (4) Åθ = 2.4–29.1°
b = 10.6505 (3) ŵ = 6.01 mm1
c = 14.5633 (5) ÅT = 123 K
β = 109.752 (4)°Block, colourless
V = 1755.91 (10) Å30.40 × 0.20 × 0.20 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur S diffractometer2673 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.034
graphiteθmax = 26.0°, θmin = 2.4°
ω scansh = −14→14
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)k = −13→13
Tmin = 0.698, Tmax = 1.000l = −17→17
17826 measured reflections1 standard reflections every 50 reflections
3440 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.035H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.012P)2] where P = (Fo2 + 2Fc2)/3
3440 reflections(Δ/σ)max = 0.002
172 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.034333 (19)0.34304 (2)0.425367 (16)0.02008 (7)
Br20.36966 (2)0.21717 (2)0.546307 (18)0.02735 (7)
C10.43775 (18)0.4264 (2)0.80678 (16)0.0251 (6)
H1A0.45370.36360.76370.038*
H1B0.43970.38630.86790.038*
H1C0.49800.49240.82090.038*
C20.2739 (2)0.6418 (2)0.80978 (17)0.0296 (6)
H2A0.34180.69690.81750.044*
H2B0.27030.62070.87420.044*
H2C0.20110.68500.77140.044*
C30.16458 (18)0.3884 (2)0.74214 (15)0.0168 (5)
H3A0.17200.36540.80980.020*
H3B0.08940.43490.71380.020*
C40.03415 (18)0.2212 (2)0.65665 (15)0.0178 (5)
H4A−0.02020.28160.61170.021*
H4B0.01160.21480.71590.021*
C50.0203 (2)0.0941 (2)0.60787 (16)0.0234 (6)
H5A0.03800.10130.54650.028*
H5B−0.06250.06560.59120.028*
C60.10247 (19)−0.0026 (2)0.67401 (17)0.0246 (6)
H6A0.0809−0.01590.73310.029*
H6B0.0954−0.08370.63940.029*
C70.22848 (19)0.0459 (2)0.70248 (17)0.0215 (6)
H7A0.2824−0.01320.74900.026*
H7B0.25220.05040.64370.026*
C80.23979 (19)0.1747 (2)0.74873 (15)0.0176 (5)
H8A0.22320.16800.81070.021*
H8B0.32220.20430.76460.021*
C90.32287 (19)0.5977 (2)0.56932 (16)0.0198 (5)
C100.2842 (2)0.5668 (2)0.46137 (16)0.0271 (6)
H10A0.30380.47930.45290.041*
H10B0.32500.62230.42950.041*
H10C0.19870.57900.43200.041*
C110.2945 (2)0.7356 (2)0.58157 (17)0.0275 (6)
H11A0.20900.74890.55330.041*
H11B0.33490.78930.54810.041*
H11C0.32140.75690.65110.041*
C120.45464 (18)0.5736 (2)0.61593 (17)0.0283 (6)
H12A0.48150.60380.68350.042*
H12B0.49730.61820.57920.042*
H12C0.47010.48330.61520.042*
H1N0.1857 (18)0.544 (2)0.5961 (15)0.024 (7)*
N10.25541 (17)0.51356 (18)0.61717 (13)0.0169 (5)
N20.15788 (14)0.26976 (16)0.68447 (12)0.0126 (4)
Si0.29025 (5)0.49627 (6)0.74618 (5)0.01692 (15)
Zn0.20862 (2)0.32732 (2)0.565755 (18)0.01447 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.01765 (13)0.02519 (15)0.01490 (13)−0.00001 (11)0.00222 (10)0.00006 (11)
Br20.02695 (14)0.02831 (15)0.03360 (15)0.01126 (12)0.01917 (12)0.00731 (13)
C10.0218 (14)0.0238 (15)0.0254 (15)−0.0039 (11)0.0025 (12)0.0022 (12)
C20.0291 (15)0.0299 (16)0.0306 (16)−0.0056 (12)0.0112 (13)−0.0105 (12)
C30.0175 (13)0.0198 (14)0.0152 (13)0.0025 (11)0.0081 (11)−0.0013 (11)
C40.0144 (12)0.0245 (14)0.0156 (13)−0.0032 (11)0.0062 (11)0.0008 (11)
C50.0199 (14)0.0276 (16)0.0214 (14)−0.0114 (12)0.0052 (12)−0.0033 (12)
C60.0311 (15)0.0174 (14)0.0265 (15)−0.0076 (12)0.0115 (13)−0.0007 (11)
C70.0254 (14)0.0150 (14)0.0252 (14)0.0025 (11)0.0099 (12)0.0047 (11)
C80.0152 (12)0.0183 (14)0.0175 (13)0.0015 (11)0.0030 (10)0.0054 (11)
C90.0178 (13)0.0194 (14)0.0220 (14)−0.0037 (11)0.0065 (11)0.0027 (11)
C100.0347 (16)0.0228 (15)0.0268 (15)−0.0032 (12)0.0144 (13)0.0059 (12)
C110.0279 (15)0.0201 (15)0.0353 (16)−0.0060 (12)0.0118 (13)−0.0006 (12)
C120.0176 (14)0.0345 (17)0.0342 (16)−0.0016 (12)0.0106 (13)0.0053 (12)
N10.0135 (11)0.0187 (12)0.0190 (11)−0.0038 (9)0.0064 (10)−0.0013 (9)
N20.0101 (10)0.0145 (11)0.0121 (10)−0.0007 (8)0.0023 (8)−0.0006 (8)
Si0.0168 (4)0.0177 (4)0.0158 (4)−0.0018 (3)0.0049 (3)−0.0033 (3)
Zn0.01415 (14)0.01651 (15)0.01335 (15)0.00006 (12)0.00541 (12)−0.00062 (12)

Geometric parameters (Å, °)

Br1—Zn2.3887 (4)C7—C81.513 (3)
Br2—Zn2.3622 (3)C7—H7A0.9900
C1—Si1.850 (2)C7—H7B0.9900
C1—H1A0.9800C8—N21.500 (2)
C1—H1B0.9800C8—H8A0.9900
C1—H1C0.9800C8—H8B0.9900
C2—Si1.850 (2)C9—C101.517 (3)
C2—H2A0.9800C9—C121.520 (3)
C2—H2B0.9800C9—N11.526 (3)
C2—H2C0.9800C9—C111.532 (3)
C3—N21.504 (3)C10—H10A0.9800
C3—Si1.884 (2)C10—H10B0.9800
C3—H3A0.9900C10—H10C0.9800
C3—H3B0.9900C11—H11A0.9800
C4—N21.496 (2)C11—H11B0.9800
C4—C51.512 (3)C11—H11C0.9800
C4—H4A0.9900C12—H12A0.9800
C4—H4B0.9900C12—H12B0.9800
C5—C61.524 (3)C12—H12C0.9800
C5—H5A0.9900N1—Si1.7909 (19)
C5—H5B0.9900N1—Zn2.1276 (19)
C6—C71.520 (3)N1—H1N0.85 (2)
C6—H6A0.9900N2—Zn2.1096 (16)
C6—H6B0.9900
Si—C1—H1A109.5C10—C9—C12109.55 (19)
Si—C1—H1B109.5C10—C9—N1108.78 (18)
H1A—C1—H1B109.5C12—C9—N1109.40 (18)
Si—C1—H1C109.5C10—C9—C11109.01 (19)
H1A—C1—H1C109.5C12—C9—C11110.46 (19)
H1B—C1—H1C109.5N1—C9—C11109.62 (17)
Si—C2—H2A109.5C9—C10—H10A109.5
Si—C2—H2B109.5C9—C10—H10B109.5
H2A—C2—H2B109.5H10A—C10—H10B109.5
Si—C2—H2C109.5C9—C10—H10C109.5
H2A—C2—H2C109.5H10A—C10—H10C109.5
H2B—C2—H2C109.5H10B—C10—H10C109.5
N2—C3—Si114.88 (13)C9—C11—H11A109.5
N2—C3—H3A108.5C9—C11—H11B109.5
Si—C3—H3A108.5H11A—C11—H11B109.5
N2—C3—H3B108.5C9—C11—H11C109.5
Si—C3—H3B108.5H11A—C11—H11C109.5
H3A—C3—H3B107.5H11B—C11—H11C109.5
N2—C4—C5112.22 (17)C9—C12—H12A109.5
N2—C4—H4A109.2C9—C12—H12B109.5
C5—C4—H4A109.2H12A—C12—H12B109.5
N2—C4—H4B109.2C9—C12—H12C109.5
C5—C4—H4B109.2H12A—C12—H12C109.5
H4A—C4—H4B107.9H12B—C12—H12C109.5
C4—C5—C6111.29 (19)C9—N1—Si124.57 (15)
C4—C5—H5A109.4C9—N1—Zn120.32 (13)
C6—C5—H5A109.4Si—N1—Zn102.34 (9)
C4—C5—H5B109.4C9—N1—H1N102.9 (15)
C6—C5—H5B109.4Si—N1—H1N105.6 (14)
H5A—C5—H5B108.0Zn—N1—H1N96.6 (16)
C7—C6—C5108.47 (18)C4—N2—C8108.62 (16)
C7—C6—H6A110.0C4—N2—C3107.58 (15)
C5—C6—H6A110.0C8—N2—C3108.60 (16)
C7—C6—H6B110.0C4—N2—Zn114.54 (13)
C5—C6—H6B110.0C8—N2—Zn113.37 (12)
H6A—C6—H6B108.4C3—N2—Zn103.75 (12)
C8—C7—C6111.13 (18)N1—Si—C1112.86 (10)
C8—C7—H7A109.4N1—Si—C2114.35 (10)
C6—C7—H7A109.4C1—Si—C2110.18 (11)
C8—C7—H7B109.4N1—Si—C397.42 (9)
C6—C7—H7B109.4C1—Si—C3113.57 (10)
H7A—C7—H7B108.0C2—Si—C3107.88 (10)
N2—C8—C7113.13 (18)N2—Zn—N195.62 (7)
N2—C8—H8A109.0N2—Zn—Br2115.47 (5)
C7—C8—H8A109.0N1—Zn—Br2112.03 (5)
N2—C8—H8B109.0N2—Zn—Br1107.97 (5)
C7—C8—H8B109.0N1—Zn—Br1106.69 (5)
H8A—C8—H8B107.8Br2—Zn—Br1116.759 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2078).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J., Cross, R. J. & Barley, H. R. L. (2001). Acta Cryst. E57, o992–o993.
  • Herrmann, W. A., Dyckhoff, F. & Herdtweck, E. (1992). Chem. Ber.125, 2651–2656.
  • Lerner, H.-W., Wiberg, N. & Bats, J. W. (2005). J. Organomet. Chem.690, 3898–3907.
  • Mimoun, H., de Saint Laumer, J. Y., Giannini, L., Scopelliti, R. & Floriani, C. (1999). J. Am. Chem. Soc.121, 6158–6166.
  • Ott, H., Däschlein, C., Leusser, D., Schildbach, D., Seibel, T., Stalke, D. & Strohmann, C. (2008). J. Am. Chem. Soc.130, 11901–11911. [PubMed]
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Strohmann, C., Abele, B. C., Lehmen, K. & Schildbach, D. (2005). Angew. Chem. Int. Ed.117, 3196–3199.
  • Strohmann, C., Lehmen, K. & Dilsky, S. (2006). J. Am. Chem. Soc.128, 8102–8103. [PubMed]
  • Strohmann, C., Lehmen, K., Wild, K. & Schildbach, D. (2002). Organometallics, 21, 3079–3081.
  • Strohmann, C. & Schildbach, D. (2002). Acta Cryst. C58, m447–m449. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography