PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): m632.
Published online 2009 May 14. doi:  10.1107/S1600536809016924
PMCID: PMC2969550

Poly[(μ2-azido-κ2 N 1:N 1)[μ2-5-(8-quinolyl­oxy­methyl)tetra­zolato-κ4 N 1,O,N 5:N 4]zinc(II)]

Abstract

In the title compound, [Zn(C11H8N5O)(N3)]n, the Zn atom is hexa­coordinated by five N atoms and one O atom in a distorted octa­hedral geometry. The chelating 5-(8-quinolyloxymeth­yl)tetra­zolate ligands are approximately planar, with a dihedral angle of 3.6 (2)° between the quinoline and tetra­zole planes. Adjacent Zn atoms are linked by two bridging azide ligands across a centre of inversion, and further coordination by one N atom of an adjacent tetra­zole unit forms two-dimensional frameworks in (100). C—H(...)N inter­actions exist between ligands in neighbouring layers.

Related literature

For the use of tetra­zole derivatives in coordination chemistry, see: Wang et al. (2005 [triangle]); Xiong et al. (2002 [triangle]). For details of the synthetis, see: Luo & Ye (2008 [triangle]). For related structures, see: Wang & Ye (2008 [triangle]); Chen & Ye (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m632-scheme1.jpg

Experimental

Crystal data

  • [Zn(C11H8N5O)(N3)]
  • M r = 333.64
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m632-efi1.jpg
  • a = 10.352 (8) Å
  • b = 14.108 (9) Å
  • c = 8.626 (8) Å
  • β = 90.31 (2)°
  • V = 1259.8 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.96 mm−1
  • T = 294 K
  • 0.18 × 0.12 × 0.10 mm

Data collection

  • Rigaku SCXmini CCD diffractometer
  • Absorption correction: multi-scan CrystalClear (Rigaku, 2005 [triangle]) T min = 0.714, T max = 0.821
  • 11540 measured reflections
  • 2714 independent reflections
  • 2261 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.183
  • S = 1.19
  • 2714 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.71 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016924/bi2367sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016924/bi2367Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Southeast University.

supplementary crystallographic information

Comment

As shown in Fig. 1, the Zn atom adopts a distorted octahedral coordination geometry, coordinated by one N atom and one O atom from 8-hydroxyquinoline, two N atoms from two different tetrazole groups and two N atoms from two bridging azide groups. Thus, 8-[(1H-tetrazol-5-yl)methoxy]quinoline acts as a tetradentate linker while the azide groups bridge between Zn atoms to form centrosymmetric rhombic units. Two-dimensional frameworks are formed in the (100) planes, and C—H···N interactions exist between ligands in neighbouring planes.

Experimental

A mixture of quinolin-8-ol (1.45 g, 10 mmol), 1.38 g K2CO3, 30 ml acetone and 2-bromoacetonitrile (1.32 g,11 mmol) was refluxed overnight. After cooling, the resulting dark mixture was extracted with ether (30 ml) and the solvent was removed at reduced pressure to give a crude product. Recrystallization from ethanol gave the pure ligand 2-(quinolin-8-yloxy)acetonitrile as a white powder. A mixture of this ligand (0.037 g, 0.2 mmol), ZnCl2 (0.026 g, 0.2 mmol) and water (1 ml) was sealed in a glass tube and maintained at 383 K. Yellow crystals of the title compound suitable for X-ray analysis were obtained after 3 d.

Refinement

H atoms were placed geometrically with C—H = 0.93 or 0.97 Å and allowed to ride during refinement with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted. Symmetry code: (A) 2 - x, 2 - y, -z.
Fig. 2.
Packing diagram viewed along the a axis.

Crystal data

[Zn(C11H8N5O)(N3)]F(000) = 672
Mr = 333.64Dx = 1.759 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3428 reflections
a = 10.352 (8) Åθ = 2.0–27.3°
b = 14.108 (9) ŵ = 1.96 mm1
c = 8.626 (8) ÅT = 294 K
β = 90.31 (2)°Block, pale yellow
V = 1259.8 (17) Å30.18 × 0.12 × 0.10 mm
Z = 4

Data collection

Rigaku SCXmini CCD diffractometer2714 independent reflections
Radiation source: fine-focus sealed tube2261 reflections with I > 2σ(I)
graphiteRint = 0.059
ω scansθmax = 27.3°, θmin = 2.0°
Absorption correction: multi-scan CrystalClear (Rigaku, 2005)h = −13→13
Tmin = 0.714, Tmax = 0.821k = −18→18
11540 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.19w = 1/[σ2(Fo2) + (0.0764P)2] where P = (Fo2 + 2Fc2)/3
2714 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = −0.71 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.95242 (4)0.90443 (3)0.09995 (5)0.0298 (2)
N50.7775 (3)0.9622 (3)0.1958 (4)0.0347 (8)
N11.0142 (3)0.7920 (3)−0.0386 (4)0.0374 (8)
O10.7733 (3)0.8144 (2)0.0151 (4)0.0420 (8)
C90.6528 (4)0.8458 (3)0.0556 (5)0.0343 (9)
C80.5420 (4)0.9627 (4)0.2162 (6)0.0447 (11)
C70.7806 (5)1.0369 (3)0.2914 (5)0.0433 (11)
H7A0.86051.06290.31730.052*
C60.6587 (4)0.9259 (3)0.1565 (5)0.0326 (9)
C50.4240 (5)0.9206 (4)0.1716 (8)0.0595 (15)
H5A0.34690.94470.21000.071*
C40.5380 (4)0.8062 (3)0.0114 (6)0.0471 (11)
H4A0.53660.7553−0.05710.056*
C30.4212 (5)0.8432 (4)0.0705 (8)0.0621 (15)
H3A0.34270.81610.04210.075*
C20.5503 (5)1.0407 (4)0.3162 (6)0.0551 (14)
H2A0.47551.06740.35660.066*
C110.7891 (4)0.7426 (3)−0.0998 (5)0.0340 (9)
H11A0.74930.7611−0.19730.041*
H11B0.75210.6829−0.06610.041*
N21.1345 (4)0.7624 (3)−0.0749 (5)0.0488 (10)
C100.9352 (4)0.7353 (3)−0.1149 (5)0.0319 (8)
N61.0849 (3)1.0102 (3)0.1218 (4)0.0351 (8)
N31.1247 (4)0.6921 (3)−0.1722 (5)0.0504 (11)
C10.6690 (6)1.0780 (4)0.3545 (7)0.0538 (13)
H1A0.67531.12960.42120.065*
N71.1303 (4)1.0413 (3)0.2394 (4)0.0382 (8)
N81.1778 (6)1.0723 (4)0.3487 (6)0.0664 (14)
N40.9978 (3)0.6719 (3)−0.1977 (4)0.0371 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0276 (3)0.0278 (3)0.0339 (3)−0.00349 (16)0.0000 (2)−0.00067 (16)
N50.0353 (18)0.0345 (18)0.0345 (18)0.0002 (15)0.0042 (15)0.0007 (15)
N10.0323 (18)0.039 (2)0.041 (2)0.0005 (15)−0.0040 (16)−0.0074 (16)
O10.0300 (15)0.0434 (17)0.0526 (19)−0.0026 (13)0.0022 (14)−0.0189 (14)
C90.029 (2)0.034 (2)0.040 (2)−0.0011 (16)0.0015 (17)0.0019 (17)
C80.032 (2)0.049 (3)0.053 (3)0.011 (2)0.005 (2)0.006 (2)
C70.046 (3)0.041 (2)0.044 (2)−0.004 (2)0.003 (2)−0.011 (2)
C60.028 (2)0.036 (2)0.034 (2)−0.0015 (17)0.0012 (17)0.0041 (17)
C50.030 (3)0.057 (3)0.092 (5)0.008 (2)0.007 (3)0.003 (3)
C40.036 (2)0.044 (3)0.061 (3)−0.006 (2)−0.005 (2)0.004 (2)
C30.030 (2)0.069 (4)0.087 (4)−0.005 (2)−0.005 (3)−0.001 (3)
C20.044 (3)0.061 (3)0.061 (3)0.016 (2)0.015 (2)−0.012 (3)
C110.038 (2)0.031 (2)0.033 (2)−0.0013 (17)0.0002 (17)−0.0049 (16)
N20.037 (2)0.050 (2)0.059 (3)0.0069 (18)−0.0083 (19)−0.011 (2)
C100.039 (2)0.0271 (19)0.0290 (18)−0.0014 (16)−0.0001 (16)−0.0019 (15)
N60.0348 (18)0.0364 (19)0.0341 (18)−0.0118 (15)−0.0039 (15)0.0024 (14)
N30.036 (2)0.054 (3)0.061 (3)0.0023 (18)−0.0036 (19)−0.019 (2)
C10.055 (3)0.049 (3)0.057 (3)0.002 (2)0.012 (3)−0.017 (3)
N70.041 (2)0.0360 (19)0.0371 (19)−0.0044 (16)−0.0013 (16)−0.0009 (15)
N80.089 (4)0.062 (3)0.048 (3)−0.012 (3)−0.018 (3)−0.013 (2)
N40.0325 (18)0.0384 (19)0.0403 (19)0.0055 (15)−0.0001 (15)−0.0099 (16)

Geometric parameters (Å, °)

Zn1—N62.035 (4)C5—C31.398 (9)
Zn1—N12.088 (4)C5—H5A0.930
Zn1—N4i2.102 (4)C4—C31.415 (7)
Zn1—N52.155 (4)C4—H4A0.930
Zn1—N6ii2.291 (4)C3—H3A0.930
Zn1—O12.360 (4)C2—C11.376 (8)
N5—C71.338 (6)C2—H2A0.930
N5—C61.373 (6)C11—C101.522 (6)
N1—C101.318 (5)C11—H11A0.970
N1—N21.352 (5)C11—H11B0.970
O1—C91.371 (5)N2—N31.302 (6)
O1—C111.428 (5)C10—N41.318 (5)
C9—C41.366 (6)N6—N71.199 (5)
C9—C61.426 (6)N6—Zn1ii2.291 (4)
C8—C21.401 (7)N3—N41.361 (6)
C8—C51.410 (8)C1—H1A0.930
C8—C61.415 (6)N7—N81.147 (6)
C7—C11.405 (7)N4—Zn1iii2.102 (4)
C7—H7A0.930
N6—Zn1—N1113.67 (17)C8—C6—C9118.6 (4)
N6—Zn1—N4i98.71 (15)C3—C5—C8120.9 (5)
N1—Zn1—N4i91.07 (17)C3—C5—H5A119.5
N6—Zn1—N5104.72 (17)C8—C5—H5A119.5
N1—Zn1—N5140.15 (14)C9—C4—C3119.5 (5)
N4i—Zn1—N593.41 (15)C9—C4—H4A120.2
N6—Zn1—N6ii78.59 (15)C3—C4—H4A120.2
N1—Zn1—N6ii88.40 (17)C5—C3—C4119.9 (5)
N4i—Zn1—N6ii176.76 (13)C5—C3—H3A120.1
N5—Zn1—N6ii89.04 (15)C4—C3—H3A120.1
N6—Zn1—O1162.00 (14)C1—C2—C8120.0 (5)
N1—Zn1—O169.91 (14)C1—C2—H2A120.0
N4i—Zn1—O198.84 (14)C8—C2—H2A120.0
N5—Zn1—O170.27 (15)O1—C11—C10103.0 (3)
N6ii—Zn1—O183.98 (13)O1—C11—H11A111.2
C7—N5—C6117.7 (4)C10—C11—H11A111.2
C7—N5—Zn1121.1 (3)O1—C11—H11B111.2
C6—N5—Zn1121.1 (3)C10—C11—H11B111.2
C10—N1—N2105.5 (4)H11A—C11—H11B109.1
C10—N1—Zn1123.8 (3)N3—N2—N1108.4 (4)
N2—N1—Zn1130.7 (3)N4—C10—N1112.2 (4)
C9—O1—C11120.9 (3)N4—C10—C11125.7 (4)
C9—O1—Zn1117.5 (3)N1—C10—C11122.1 (4)
C11—O1—Zn1120.3 (2)N7—N6—Zn1127.4 (3)
C4—C9—O1126.0 (4)N7—N6—Zn1ii125.3 (3)
C4—C9—C6121.9 (4)Zn1—N6—Zn1ii101.41 (15)
O1—C9—C6112.0 (4)N2—N3—N4109.7 (4)
C2—C8—C5123.3 (5)C2—C1—C7119.0 (5)
C2—C8—C6117.6 (5)C2—C1—H1A120.5
C5—C8—C6119.1 (5)C7—C1—H1A120.5
N5—C7—C1123.1 (5)N8—N7—N6177.4 (5)
N5—C7—H7A118.4C10—N4—N3104.3 (4)
C1—C7—H7A118.4C10—N4—Zn1iii133.6 (3)
N5—C6—C8122.5 (4)N3—N4—Zn1iii117.0 (3)
N5—C6—C9118.8 (4)
N6—Zn1—N5—C7−19.6 (4)C5—C8—C6—C9−1.4 (7)
N1—Zn1—N5—C7176.1 (3)C4—C9—C6—N5−179.8 (4)
N4i—Zn1—N5—C780.3 (4)O1—C9—C6—N51.8 (6)
N6ii—Zn1—N5—C7−97.6 (4)C4—C9—C6—C82.3 (7)
O1—Zn1—N5—C7178.5 (4)O1—C9—C6—C8−176.1 (4)
N6—Zn1—N5—C6158.0 (3)C2—C8—C5—C3179.5 (5)
N1—Zn1—N5—C6−6.3 (4)C6—C8—C5—C30.4 (9)
N4i—Zn1—N5—C6−102.1 (3)O1—C9—C4—C3176.1 (5)
N6ii—Zn1—N5—C680.0 (3)C6—C9—C4—C3−2.0 (7)
O1—Zn1—N5—C6−3.9 (3)C8—C5—C3—C4−0.1 (10)
N6—Zn1—N1—C10−154.1 (3)C9—C4—C3—C50.9 (9)
N4i—Zn1—N1—C10106.0 (4)C5—C8—C2—C1−180.0 (6)
N5—Zn1—N1—C109.3 (5)C6—C8—C2—C1−0.8 (8)
N6ii—Zn1—N1—C10−77.3 (4)C9—O1—C11—C10176.3 (4)
O1—Zn1—N1—C106.9 (3)Zn1—O1—C11—C109.5 (4)
N6—Zn1—N1—N223.8 (5)C10—N1—N2—N31.5 (5)
N4i—Zn1—N1—N2−76.2 (4)Zn1—N1—N2—N3−176.6 (3)
N5—Zn1—N1—N2−172.8 (3)N2—N1—C10—N4−0.3 (5)
N6ii—Zn1—N1—N2100.6 (4)Zn1—N1—C10—N4178.0 (3)
O1—Zn1—N1—N2−175.2 (4)N2—N1—C10—C11177.4 (4)
N6—Zn1—O1—C9−71.8 (5)Zn1—N1—C10—C11−4.3 (6)
N1—Zn1—O1—C9−176.7 (3)O1—C11—C10—N4173.4 (4)
N4i—Zn1—O1—C995.4 (3)O1—C11—C10—N1−3.9 (5)
N5—Zn1—O1—C94.9 (3)N1—Zn1—N6—N7−123.2 (4)
N6ii—Zn1—O1—C9−86.2 (3)N4i—Zn1—N6—N7−28.2 (4)
N6—Zn1—O1—C1195.5 (5)N5—Zn1—N6—N767.7 (4)
N1—Zn1—O1—C11−9.5 (3)N6ii—Zn1—N6—N7153.7 (5)
N4i—Zn1—O1—C11−97.4 (3)O1—Zn1—N6—N7139.0 (4)
N5—Zn1—O1—C11172.1 (3)N1—Zn1—N6—Zn1ii83.13 (19)
N6ii—Zn1—O1—C1181.0 (3)N4i—Zn1—N6—Zn1ii178.17 (15)
C11—O1—C9—C49.5 (7)N5—Zn1—N6—Zn1ii−85.94 (17)
Zn1—O1—C9—C4176.6 (4)N6ii—Zn1—N6—Zn1ii0.0
C11—O1—C9—C6−172.2 (4)O1—Zn1—N6—Zn1ii−14.7 (5)
Zn1—O1—C9—C6−5.1 (5)N1—N2—N3—N4−2.1 (6)
C6—N5—C7—C11.2 (7)C8—C2—C1—C70.3 (9)
Zn1—N5—C7—C1178.9 (4)N5—C7—C1—C2−0.5 (9)
C7—N5—C6—C8−1.8 (6)N1—C10—N4—N3−1.0 (5)
Zn1—N5—C6—C8−179.4 (3)C11—C10—N4—N3−178.5 (4)
C7—N5—C6—C9−179.6 (4)N1—C10—N4—Zn1iii−153.6 (3)
Zn1—N5—C6—C92.8 (5)C11—C10—N4—Zn1iii28.8 (7)
C2—C8—C6—N51.6 (7)N2—N3—N4—C101.9 (5)
C5—C8—C6—N5−179.2 (5)N2—N3—N4—Zn1iii160.0 (3)
C2—C8—C6—C9179.4 (4)

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+2, −y+2, −z; (iii) x, −y+3/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3A···N2iv0.932.493.411 (8)170
C11—H11B···N8v0.972.543.252 (7)130

Symmetry codes: (iv) x−1, y, z; (v) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2367).

References

  • Chen, F. & Ye, H.-Y. (2008). Acta Cryst. E64, m1060. [PMC free article] [PubMed]
  • Luo, H.-Z. & Ye, H.-Y. (2008). Acta Cryst. E64, o136. [PMC free article] [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem.44, 5278–5285. [PubMed]
  • Wang, G.-X. & Ye, H.-Y. (2008). Acta Cryst. E64, m1006. [PMC free article] [PubMed]
  • Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed.41, 3800–3803. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography