PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1281.
Published online 2009 May 14. doi:  10.1107/S1600536809017358
PMCID: PMC2969539

4-Hex­yloxy-3-methoxy­benzaldehyde

Abstract

The title compound, C14H20O3, is a synthetic analogue with a long aliphatic side chain of the important food additive and flavoring agent, vanillin. There are two independent mol­ecules in the asymmetric unit, each having an essentially planar conformation (r.m.s. deviations of 0.023 and 0.051Å for all non–H atoms of the two mol­ecules in the asymmetric unit).

Related literature

Schiff-base derivatives (Guo et al., 2008 [triangle]), metal complexes (Neelakantan et al., 2008 [triangle]) and 2-amino-4-phenylthiazole derivatives (Ashalekshmi et al., 2008 [triangle]) of vanillin have shown potential antibacterial activity. Bromovanin (6-bromine-5-hydroxy-4-methoxybenzaldehyde) (Yan et al., 2007 [triangle]) and caffeate analogues (Xia et al., 2008 [triangle]) derived from vanillin exhibit a potent anti-proliferative effect on a broad spectrum of cancer cell lines. For the biological activity of vanillin, see: Liang et al. (2009 [triangle]), and for glycosides of vanillin, see: Charles et al. (2009 [triangle]); Lim et al. (2008 [triangle]). For details of the synthesis, see: Williamson (1852 [triangle]). For related structures, see: Li (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1281-scheme1.jpg

Experimental

Crystal data

  • C14H20O3
  • M r = 236.30
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1281-efi1.jpg
  • a = 9.2788 (5) Å
  • b = 9.3894 (6) Å
  • c = 15.8501 (9) Å
  • α = 88.099 (5)°
  • β = 75.065 (5)°
  • γ = 80.262 (5)°
  • V = 1314.95 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 173 K
  • 0.42 × 0.37 × 0.36 mm

Data collection

  • STOE IPDS II two-circle diffractometer
  • Absorption correction: none
  • 17943 measured reflections
  • 4919 independent reflections
  • 3862 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.144
  • S = 1.06
  • 4919 reflections
  • 309 parameters
  • H-atom parameters constrained
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global_rauf53. DOI: 10.1107/S1600536809017358/hg2506sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017358/hg2506Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AA is grateful to the Higher Education Commission of Pakistan for financial support for the PhD program under scholarship No.[II-0317109].

supplementary crystallographic information

Comment

Vanillin, a well known flavoring agent, is the principal flavor and aroma compound in vanilla. Vanillin and its derivatives have been used as flavoring food additives and precursors for the synthesis of organic compounds, and have been reported to show diverse biological applications. Schiff-base derivatives (Guo et al., 2008), metal complexes (Neelakantan et al., 2008) and 2-amino-4-phenylthiazole derivatives (Ashalekshmi et al., 2008) of vanillin have shown potential antibacterial activities against E. Coli, S. Aureus, B. Subtilis, P. Aeruginosa, K. Pneumoniae, B. Megaterium, V. Cholerae, and S. Typhi,. Bromovanin (6-bromine-5-hydroxy-4-methoxybenzaldehyde) (Yan et al., 2007) and caffeate analogues (Xia et al., 2008) derived from vanillin exhibits a potent anti-proliferative effect on a broad spectrum of cancer cell lines. Vanillin (Liang et al., 2009) and glycosides of vanillin (Charles et al., 2009), exhibit enzyme inhibition, antioxidant, anti-angiogenic, anti-inflammatory and anti-nociceptive activities (Lim et al., 2008). As part of interest in vanillin derivatives, we now report the crystal structure of the title compound (I). A view of compound (I), is shown in Fig 1. The geometrical parameters for (I) are normal (Allen et al.,1987) and consistent with those of recently reported ethyl vanillin structure (Li, 2008).The asymmetric unit consist two conformers, each having almost planar conformation. C8, O1 and O2 deviate from the mean plane (C11–C16) by 0.028 (3), 0.020 (2), and 0.020 (2) A°, respectively. The deviations of C8A, O1A and O2A from the mean plane (C11A–C16A) are 0.001 (3), 0.025 (2) and 0.011 (2) A°, respectively.

Experimental

Vanillin (4-hydroxy-3-methoxybenzaldehyde) (1.52 g) was dissolved in butan-2-one (20 ml), then added K2CO3 (1.38 g), heated at 60°C and stirred for half an hour. 1-Bromohexane (1.65 g) was added to the reaction mixture and refluxed for 3–4 h on an oil bath (Williamson, 1852). The progress of the reaction was monitored by TLC. Once the reaction was completed, the product was extracted in diethyl ether, solvent evaporated under reduced pressure and crystallized from dichloromethane to get the title compound (I).

Refinement

Hydrogen atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with Caromatic—H = 0.95 Å, Cmethylene—H = 0.99 Å, Uiso(H) = 1.2U(Ceq) or Cmethyl—H = 0.98 Å. The highest peak in the final difference density map (0.68 e Å-3) is located at 0.76Å from H8A.

Figures

Fig. 1.
Molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C14H20O3Z = 4
Mr = 236.30F(000) = 512
Triclinic, P1Dx = 1.194 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2788 (5) ÅCell parameters from 16295 reflections
b = 9.3894 (6) Åθ = 3.5–25.9°
c = 15.8501 (9) ŵ = 0.08 mm1
α = 88.099 (5)°T = 173 K
β = 75.065 (5)°Block, colourless
γ = 80.262 (5)°0.42 × 0.37 × 0.36 mm
V = 1314.95 (13) Å3

Data collection

STOE IPDS II two-circle-diffractometer3862 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
graphiteθmax = 25.6°, θmin = 3.4°
ω scansh = −11→11
17943 measured reflectionsk = −11→11
4919 independent reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0794P)2 + 0.213P] where P = (Fo2 + 2Fc2)/3
4919 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.65027 (12)0.60519 (12)0.99368 (6)0.0403 (3)
O20.69937 (12)0.56660 (11)1.14584 (6)0.0397 (3)
O31.13475 (16)0.12211 (15)1.10444 (9)0.0648 (4)
C10.62080 (18)0.63144 (18)0.90887 (9)0.0412 (4)
H1A0.58700.54630.88970.049*
H1B0.71460.64750.86560.049*
C20.50012 (17)0.76247 (17)0.91409 (9)0.0395 (4)
H2A0.53420.84790.93270.047*
H2B0.40640.74680.95760.047*
C30.46892 (16)0.78865 (17)0.82439 (9)0.0376 (3)
H3A0.56250.80870.78250.045*
H3B0.44420.69900.80460.045*
C40.34118 (16)0.91241 (17)0.82143 (9)0.0372 (3)
H4A0.24740.89350.86360.045*
H4B0.36641.00290.83980.045*
C50.31230 (17)0.93292 (17)0.73137 (10)0.0399 (4)
H5A0.28740.84230.71290.048*
H5B0.40590.95220.68920.048*
C60.1844 (2)1.05620 (19)0.72871 (12)0.0510 (4)
H6A0.17011.06430.66950.076*
H6B0.20971.14680.74520.076*
H6C0.09101.03710.76970.076*
C70.72298 (18)0.55017 (17)1.23152 (9)0.0405 (4)
H7A0.70670.45371.25320.061*
H7B0.65170.62351.27070.061*
H7C0.82680.56211.22940.061*
C81.0993 (2)0.1514 (2)1.03692 (11)0.0514 (4)
H81.15340.09350.98710.062*
C110.75896 (17)0.49258 (16)0.99937 (9)0.0354 (3)
C120.78770 (16)0.47099 (16)1.08300 (9)0.0338 (3)
C130.89766 (16)0.36073 (16)1.09506 (9)0.0359 (3)
H130.91770.34701.15090.043*
C140.98097 (17)0.26779 (17)1.02520 (10)0.0393 (3)
C150.95082 (18)0.28820 (18)0.94401 (10)0.0433 (4)
H151.00630.22500.89690.052*
C160.84110 (18)0.39934 (17)0.93083 (9)0.0403 (4)
H160.82160.41220.87490.048*
O1A0.54463 (11)0.20255 (12)0.59371 (6)0.0393 (3)
O2A0.57832 (11)0.17700 (11)0.75033 (6)0.0396 (3)
O3A1.10136 (16)−0.29636 (16)0.61496 (10)0.0718 (4)
C1A0.52746 (17)0.22746 (18)0.50646 (9)0.0390 (3)
H1A10.51650.13650.48070.047*
H1A20.61770.26210.46930.047*
C2A0.38839 (16)0.33951 (18)0.51114 (9)0.0384 (3)
H2A10.39690.42740.54110.046*
H2A20.29800.30170.54560.046*
C3A0.36975 (16)0.37813 (18)0.41991 (9)0.0382 (3)
H3A10.45910.41870.38660.046*
H3A20.36660.28880.38940.046*
C4A0.22797 (17)0.48624 (18)0.42019 (9)0.0395 (3)
H4A10.22980.57450.45210.047*
H4A20.13850.44460.45220.047*
C5A0.21109 (17)0.52794 (18)0.32935 (10)0.0415 (4)
H5A10.30060.56930.29700.050*
H5A20.20790.44010.29750.050*
C6A0.06916 (19)0.6370 (2)0.33156 (11)0.0489 (4)
H6A10.06310.66030.27170.073*
H6A20.07280.72510.36180.073*
H6A3−0.02000.59590.36260.073*
C7A0.60438 (19)0.17584 (18)0.83582 (10)0.0449 (4)
H7A10.59740.08000.86140.067*
H7A20.52810.24840.87300.067*
H7A30.70540.19840.83140.067*
C8A1.00578 (19)−0.2192 (2)0.66439 (14)0.0553 (5)
H8A1.0044−0.22730.72450.066*
C11A0.65958 (15)0.09930 (16)0.60415 (10)0.0349 (3)
C12A0.67768 (15)0.08413 (16)0.68992 (9)0.0337 (3)
C13A0.78979 (16)−0.01963 (16)0.70729 (10)0.0380 (3)
H13A0.8014−0.03000.76510.046*
C14A0.88682 (16)−0.11002 (17)0.64056 (11)0.0417 (4)
C15A0.87018 (17)−0.09402 (18)0.55633 (11)0.0464 (4)
H15A0.9365−0.15460.51080.056*
C16A0.75726 (17)0.00993 (18)0.53781 (10)0.0427 (4)
H16A0.74660.02010.47980.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0492 (6)0.0449 (6)0.0270 (5)−0.0025 (5)−0.0137 (4)0.0013 (4)
O20.0483 (6)0.0419 (6)0.0271 (5)0.0031 (4)−0.0126 (4)−0.0041 (4)
O30.0685 (8)0.0662 (9)0.0524 (8)0.0149 (7)−0.0189 (6)0.0002 (6)
C10.0522 (9)0.0488 (9)0.0261 (7)−0.0103 (7)−0.0153 (6)0.0041 (6)
C20.0456 (8)0.0448 (9)0.0309 (8)−0.0121 (7)−0.0124 (6)0.0037 (6)
C30.0382 (7)0.0468 (9)0.0300 (7)−0.0104 (6)−0.0105 (6)0.0027 (6)
C40.0374 (7)0.0426 (9)0.0329 (8)−0.0102 (6)−0.0090 (6)−0.0014 (6)
C50.0394 (7)0.0451 (9)0.0368 (8)−0.0049 (6)−0.0136 (6)−0.0009 (6)
C60.0560 (10)0.0499 (10)0.0481 (10)0.0034 (8)−0.0225 (8)−0.0031 (8)
C70.0520 (9)0.0439 (9)0.0267 (7)−0.0031 (7)−0.0143 (6)−0.0043 (6)
C80.0549 (10)0.0503 (10)0.0432 (10)0.0020 (8)−0.0084 (8)−0.0048 (8)
C110.0412 (7)0.0365 (8)0.0304 (7)−0.0113 (6)−0.0098 (6)0.0025 (6)
C120.0391 (7)0.0359 (8)0.0267 (7)−0.0101 (6)−0.0066 (6)−0.0015 (6)
C130.0419 (8)0.0390 (8)0.0286 (7)−0.0097 (6)−0.0106 (6)0.0014 (6)
C140.0420 (8)0.0380 (8)0.0359 (8)−0.0077 (6)−0.0059 (6)−0.0017 (6)
C150.0510 (9)0.0437 (9)0.0324 (8)−0.0092 (7)−0.0039 (7)−0.0066 (6)
C160.0505 (8)0.0446 (9)0.0269 (7)−0.0106 (7)−0.0098 (6)−0.0014 (6)
O1A0.0377 (5)0.0495 (6)0.0293 (5)0.0023 (4)−0.0124 (4)0.0026 (4)
O2A0.0441 (6)0.0423 (6)0.0325 (6)0.0022 (4)−0.0157 (4)−0.0003 (4)
O3A0.0581 (8)0.0668 (9)0.0841 (10)0.0078 (7)−0.0173 (7)−0.0103 (8)
C1A0.0412 (8)0.0509 (9)0.0262 (7)−0.0060 (7)−0.0122 (6)0.0022 (6)
C2A0.0375 (7)0.0477 (9)0.0302 (8)−0.0037 (6)−0.0116 (6)0.0028 (6)
C3A0.0359 (7)0.0501 (9)0.0287 (7)−0.0047 (6)−0.0098 (6)0.0024 (6)
C4A0.0412 (8)0.0467 (9)0.0291 (7)−0.0010 (6)−0.0102 (6)0.0003 (6)
C5A0.0403 (8)0.0504 (9)0.0325 (8)−0.0037 (7)−0.0100 (6)0.0048 (6)
C6A0.0484 (9)0.0589 (11)0.0367 (8)0.0034 (8)−0.0142 (7)0.0039 (7)
C7A0.0551 (9)0.0480 (9)0.0362 (8)−0.0050 (7)−0.0220 (7)0.0008 (7)
C8A0.0390 (8)0.0485 (10)0.0733 (12)−0.0050 (7)−0.0055 (8)−0.0072 (9)
C11A0.0311 (7)0.0372 (8)0.0374 (8)−0.0056 (6)−0.0112 (6)0.0030 (6)
C12A0.0317 (7)0.0350 (8)0.0367 (8)−0.0081 (6)−0.0113 (6)0.0025 (6)
C13A0.0347 (7)0.0387 (8)0.0450 (8)−0.0091 (6)−0.0167 (6)0.0069 (6)
C14A0.0330 (7)0.0382 (8)0.0558 (10)−0.0081 (6)−0.0135 (7)0.0032 (7)
C15A0.0355 (8)0.0445 (9)0.0542 (10)−0.0032 (7)−0.0038 (7)−0.0076 (7)
C16A0.0385 (8)0.0496 (9)0.0386 (8)−0.0042 (7)−0.0089 (6)−0.0030 (7)

Geometric parameters (Å, °)

O1—C111.3502 (18)O1A—C11A1.3548 (17)
O1—C11.4447 (17)O1A—C1A1.4395 (16)
O2—C121.3636 (17)O2A—C12A1.3622 (17)
O2—C71.4298 (16)O2A—C7A1.4358 (17)
O3—C81.209 (2)O3A—C8A1.178 (2)
C1—C21.506 (2)C1A—C2A1.508 (2)
C1—H1A0.9900C1A—H1A10.9900
C1—H1B0.9900C1A—H1A20.9900
C2—C31.5266 (19)C2A—C3A1.5249 (19)
C2—H2A0.9900C2A—H2A10.9900
C2—H2B0.9900C2A—H2A20.9900
C3—C41.522 (2)C3A—C4A1.519 (2)
C3—H3A0.9900C3A—H3A10.9900
C3—H3B0.9900C3A—H3A20.9900
C4—C51.519 (2)C4A—C5A1.520 (2)
C4—H4A0.9900C4A—H4A10.9900
C4—H4B0.9900C4A—H4A20.9900
C5—C61.519 (2)C5A—C6A1.519 (2)
C5—H5A0.9900C5A—H5A10.9900
C5—H5B0.9900C5A—H5A20.9900
C6—H6A0.9800C6A—H6A10.9800
C6—H6B0.9800C6A—H6A20.9800
C6—H6C0.9800C6A—H6A30.9800
C7—H7A0.9800C7A—H7A10.9800
C7—H7B0.9800C7A—H7A20.9800
C7—H7C0.9800C7A—H7A30.9800
C8—C141.456 (2)C8A—C14A1.490 (2)
C8—H80.9500C8A—H8A0.9500
C11—C161.392 (2)C11A—C16A1.393 (2)
C11—C121.4196 (19)C11A—C12A1.412 (2)
C12—C131.371 (2)C12A—C13A1.376 (2)
C13—C141.407 (2)C13A—C14A1.400 (2)
C13—H130.9500C13A—H13A0.9500
C14—C151.386 (2)C14A—C15A1.383 (2)
C15—C161.380 (2)C15A—C16A1.389 (2)
C15—H150.9500C15A—H15A0.9500
C16—H160.9500C16A—H16A0.9500
C11—O1—C1116.64 (11)C11A—O1A—C1A117.43 (11)
C12—O2—C7117.29 (11)C12A—O2A—C7A116.70 (11)
O1—C1—C2109.40 (12)O1A—C1A—C2A108.22 (11)
O1—C1—H1A109.8O1A—C1A—H1A1110.1
C2—C1—H1A109.8C2A—C1A—H1A1110.1
O1—C1—H1B109.8O1A—C1A—H1A2110.1
C2—C1—H1B109.8C2A—C1A—H1A2110.1
H1A—C1—H1B108.2H1A1—C1A—H1A2108.4
C1—C2—C3109.01 (12)C1A—C2A—C3A110.77 (12)
C1—C2—H2A109.9C1A—C2A—H2A1109.5
C3—C2—H2A109.9C3A—C2A—H2A1109.5
C1—C2—H2B109.9C1A—C2A—H2A2109.5
C3—C2—H2B109.9C3A—C2A—H2A2109.5
H2A—C2—H2B108.3H2A1—C2A—H2A2108.1
C4—C3—C2114.72 (12)C4A—C3A—C2A113.41 (12)
C4—C3—H3A108.6C4A—C3A—H3A1108.9
C2—C3—H3A108.6C2A—C3A—H3A1108.9
C4—C3—H3B108.6C4A—C3A—H3A2108.9
C2—C3—H3B108.6C2A—C3A—H3A2108.9
H3A—C3—H3B107.6H3A1—C3A—H3A2107.7
C5—C4—C3112.93 (12)C3A—C4A—C5A113.56 (12)
C5—C4—H4A109.0C3A—C4A—H4A1108.9
C3—C4—H4A109.0C5A—C4A—H4A1108.9
C5—C4—H4B109.0C3A—C4A—H4A2108.9
C3—C4—H4B109.0C5A—C4A—H4A2108.9
H4A—C4—H4B107.8H4A1—C4A—H4A2107.7
C4—C5—C6112.80 (13)C6A—C5A—C4A112.45 (12)
C4—C5—H5A109.0C6A—C5A—H5A1109.1
C6—C5—H5A109.0C4A—C5A—H5A1109.1
C4—C5—H5B109.0C6A—C5A—H5A2109.1
C6—C5—H5B109.0C4A—C5A—H5A2109.1
H5A—C5—H5B107.8H5A1—C5A—H5A2107.8
C5—C6—H6A109.5C5A—C6A—H6A1109.5
C5—C6—H6B109.5C5A—C6A—H6A2109.5
H6A—C6—H6B109.5H6A1—C6A—H6A2109.5
C5—C6—H6C109.5C5A—C6A—H6A3109.5
H6A—C6—H6C109.5H6A1—C6A—H6A3109.5
H6B—C6—H6C109.5H6A2—C6A—H6A3109.5
O2—C7—H7A109.5O2A—C7A—H7A1109.5
O2—C7—H7B109.5O2A—C7A—H7A2109.5
H7A—C7—H7B109.5H7A1—C7A—H7A2109.5
O2—C7—H7C109.5O2A—C7A—H7A3109.5
H7A—C7—H7C109.5H7A1—C7A—H7A3109.5
H7B—C7—H7C109.5H7A2—C7A—H7A3109.5
O3—C8—C14125.69 (16)O3A—C8A—C14A125.5 (2)
O3—C8—H8117.2O3A—C8A—H8A117.3
C14—C8—H8117.2C14A—C8A—H8A117.3
O1—C11—C16125.13 (13)O1A—C11A—C16A125.09 (13)
O1—C11—C12115.47 (12)O1A—C11A—C12A115.56 (12)
C16—C11—C12119.41 (14)C16A—C11A—C12A119.35 (13)
O2—C12—C13125.44 (13)O2A—C12A—C13A124.85 (13)
O2—C12—C11114.72 (12)O2A—C12A—C11A115.33 (12)
C13—C12—C11119.84 (13)C13A—C12A—C11A119.82 (14)
C12—C13—C14120.33 (13)C12A—C13A—C14A120.62 (14)
C12—C13—H13119.8C12A—C13A—H13A119.7
C14—C13—H13119.8C14A—C13A—H13A119.7
C15—C14—C13119.53 (14)C15A—C14A—C13A119.56 (14)
C15—C14—C8119.63 (14)C15A—C14A—C8A122.97 (15)
C13—C14—C8120.84 (14)C13A—C14A—C8A117.47 (15)
C16—C15—C14120.74 (14)C14A—C15A—C16A120.51 (15)
C16—C15—H15119.6C14A—C15A—H15A119.7
C14—C15—H15119.6C16A—C15A—H15A119.7
C15—C16—C11120.14 (14)C15A—C16A—C11A120.14 (15)
C15—C16—H16119.9C15A—C16A—H16A119.9
C11—C16—H16119.9C11A—C16A—H16A119.9
C11—O1—C1—C2−178.51 (12)C11A—O1A—C1A—C2A176.72 (12)
O1—C1—C2—C3−179.57 (12)O1A—C1A—C2A—C3A176.23 (12)
C1—C2—C3—C4176.08 (12)C1A—C2A—C3A—C4A177.66 (13)
C2—C3—C4—C5−179.02 (12)C2A—C3A—C4A—C5A178.51 (13)
C3—C4—C5—C6179.82 (13)C3A—C4A—C5A—C6A−179.53 (14)
C1—O1—C11—C16−1.5 (2)C1A—O1A—C11A—C16A−3.7 (2)
C1—O1—C11—C12178.79 (12)C1A—O1A—C11A—C12A176.50 (12)
C7—O2—C12—C13−0.3 (2)C7A—O2A—C12A—C13A7.2 (2)
C7—O2—C12—C11179.93 (12)C7A—O2A—C12A—C11A−173.04 (12)
O1—C11—C12—O20.82 (18)O1A—C11A—C12A—O2A−0.93 (18)
C16—C11—C12—O2−178.89 (13)C16A—C11A—C12A—O2A179.30 (13)
O1—C11—C12—C13−179.01 (12)O1A—C11A—C12A—C13A178.89 (12)
C16—C11—C12—C131.3 (2)C16A—C11A—C12A—C13A−0.9 (2)
O2—C12—C13—C14179.44 (14)O2A—C12A—C13A—C14A−179.87 (13)
C11—C12—C13—C14−0.8 (2)C11A—C12A—C13A—C14A0.3 (2)
C12—C13—C14—C15−0.2 (2)C12A—C13A—C14A—C15A0.4 (2)
C12—C13—C14—C8179.23 (14)C12A—C13A—C14A—C8A179.73 (13)
O3—C8—C14—C15−179.18 (18)O3A—C8A—C14A—C15A4.4 (3)
O3—C8—C14—C131.4 (3)O3A—C8A—C14A—C13A−174.92 (18)
C13—C14—C15—C160.6 (2)C13A—C14A—C15A—C16A−0.6 (2)
C8—C14—C15—C16−178.82 (15)C8A—C14A—C15A—C16A−179.89 (15)
C14—C15—C16—C11−0.1 (2)C14A—C15A—C16A—C11A0.1 (2)
O1—C11—C16—C15179.45 (14)O1A—C11A—C16A—C15A−179.05 (14)
C12—C11—C16—C15−0.9 (2)C12A—C11A—C16A—C15A0.7 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2506).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2. pp. S1–19.
  • Ashalekshmi, V. S. & Mohanan, K. (2008). Asian J. Chem.20, 623–628.
  • Charles, R. E., Ponrasu, T., Sivakumar, R. & Divakar, S. (2009). Biotechnol. Appl. Biochem. pp. 177–184. [PubMed]
  • Guo, H. M., Zhao, G. L. & Yu, Y. Y. (2008). Chin. J. Inorg. Chem.24, 1393–1399.
  • Li, Y. (2008). Chin. J. Struct. Chem.27, 1089–1092.
  • Liang, J. A., Wu, S. L., Lo, H. Y., Hsiang, C. Y. & Ho, T. Y. (2009). Mol. Pharmacol.75, 151–157. [PubMed]
  • Lim, E. J., Kang, H. J., Jung, H. J., Song, S., Lim, C. J. & Park, E. H. (2008). Biomol. Ther.16, 132–136.
  • Neelakantan, M. A., Marriappan, S. S., Dharmaraja, J., Jeyakumar, T. & Muthukumaran, K. (2008). Spectrochim Acta Part A, 71, 628–635. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  • Williamson, A. W. (1852). Q. Rev. Chem. Soc.4, 229–239.
  • Xia, C. N., Li, H. B., Liu, F. & Hu, W. X. (2008). Bioorg. Med. Chem. Lett.18, 6553–6557. [PubMed]
  • Yan, Y. Q., Zhang, B., Wang, L., Xie, Y. H., Peng, T., Bai, B. & Zhou, P. K. (2007). Cancer Lett.252, 280–289. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography