PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1248.
Published online 2009 May 14. doi:  10.1107/S160053680901647X
PMCID: PMC2969537

2,2′-{1,1′-[Butane-1,4-diyl­bis(oxy­nitrilo)]di­ethylidyne}di-1-naphthol

Abstract

The title compound, C28H28N2O4, was synthesized by the reaction of 2-acetyl-1-naphthol with 1,4-bis­(amino­oxy)butane in ethanol. The molecule, which lies about an inversion centre, adopts a linear structure, in which the oxime groups and naphthalene ring systems assume an anti conformation. The intra­molecular inter­planar distance between parallel naphthalene rings is 1.054 (3) Å. Intra­molecular O—H(...)N hydrogen bonds are formed between the oxime nitro­gen and hydr­oxy groups.

Related literature

For salen-type compounds, see: Atwood & Harvey (2001 [triangle]); Okabe & Oya (2000 [triangle]). For related structures, see: Dong et al. (2007 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1248-scheme1.jpg

Experimental

Crystal data

  • C28H28N2O4
  • M r = 456.52
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1248-efi1.jpg
  • a = 6.9590 (15) Å
  • b = 8.6598 (18) Å
  • c = 10.596 (2) Å
  • α = 105.841 (2)°
  • β = 105.940 (2)°
  • γ = 91.689 (1)°
  • V = 586.9 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.50 × 0.43 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.958, T max = 0.983
  • 3020 measured reflections
  • 2026 independent reflections
  • 1350 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.173
  • S = 1.02
  • 2026 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680901647X/hg2505sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901647X/hg2505Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge finanical support from the ‘Jing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University.

supplementary crystallographic information

Comment

Salen-type compounds and their analogues are one of the most prevalent multidentate ligands in the field of modern coordination chemistry (Atwood & Harvey, 2001), which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science and in biological systems (Okabe & Oya, 2000).

Herein, we report on the crystal structure of 2,2'-[(butane-1,4-diyldioxy)bis(nitriloethylidyne)]dinaphthol, shown in Fig. 1. The structure of the title compound consists of discrete C28H28N2O4 molecule, in which all bond lengths and angles are in normal ranges. The molecule is disposed about a crystallographic centre of symmetry with the (–CH═N—O-(CH)4—O—N═CH–) bridge adopting a linear-shaped structure. The oxime groups and naphthalene rings assume an anti conformation. This structure is not similar to what was observed in our previously reported series salen-type compounds containing four-methene bridge, which often adopt an E configuration (Dong et al., 2007, 2008).

The two naphthalene rings in each molecule of the title compound are parallel and the distance between them is 1.054 (3) Å. Two intramolecular O—H···N hydrogen bonds are formed between the oxime nitrogen and hydroxy groups.

Experimental

2,2'-[(Butane-1,4-diyldioxy)bis(nitriloethylidyne)]dinaphthol was synthesized according to our previous work (Dong et al., 2007). To an ethanol solution (5 ml) of 2-acetyl-1-naphthol (760.0 mg, 2.02 mmol) was added dropwise an ethanol solution (3 ml) of 1,4-bis(aminooxy)butane (243.0 mg, 1.01 mmol). The mixture solution was stirred at 328–333 K for 75 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried in vacuo and purified by recrystallization from ethanol to yield 618.6 mg (yield 67.0%) of powder. Single crystals were obtained by slow evaporation from a solution of ethanol/dichloromethane (1:2) of 2,2'-[(butane-1,4-diyldioxy)bis(nitriloethylidyne)]dinaphthol at room temperature for several weeks. Anal. Calcd. for C28H28N2O4: C, 73.66; H, 6.18; N, 6.14; Found: C, 73.61; H, 6.23; N, 6.09%.

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), C—H = 0.96 (CH3), 0.93 Å (CH), 0.82 Å (OH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Figures

Fig. 1.
The molecule structure of the title compound with atom numbering [Symmetry codes: -x + 1, -y + 1, -z]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Crystal data

C28H28N2O4Z = 1
Mr = 456.52F(000) = 242
Triclinic, P1Dx = 1.292 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9590 (15) ÅCell parameters from 1246 reflections
b = 8.6598 (18) Åθ = 2.5–27.6°
c = 10.596 (2) ŵ = 0.09 mm1
α = 105.841 (2)°T = 298 K
β = 105.940 (2)°Block, pale-yellow
γ = 91.689 (1)°0.50 × 0.43 × 0.20 mm
V = 586.9 (2) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer2026 independent reflections
Radiation source: fine-focus sealed tube1350 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.958, Tmax = 0.983k = −9→10
3020 measured reflectionsl = −12→6

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.096P)2 + 0.0813P] where P = (Fo2 + 2Fc2)/3
2026 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.4299 (3)0.3289 (2)0.31934 (16)0.0435 (5)
O10.3505 (2)0.37340 (18)0.19981 (14)0.0515 (5)
O20.7182 (2)0.30688 (18)0.52155 (15)0.0505 (5)
H20.66650.33260.45190.076*
C10.5112 (3)0.4251 (3)0.1562 (2)0.0455 (6)
H1A0.59660.33960.14100.055*
H1B0.59230.51890.22590.055*
C20.4211 (3)0.4667 (3)0.0252 (2)0.0449 (6)
H2A0.32770.54590.04000.054*
H2B0.34600.3705−0.04490.054*
C30.2958 (3)0.2877 (2)0.3702 (2)0.0402 (5)
C40.0759 (3)0.2939 (3)0.3091 (2)0.0627 (7)
H4A0.05780.35010.24080.094*
H4B0.01980.34960.37980.094*
H4C0.00910.18590.26730.094*
C50.5732 (3)0.2467 (2)0.5630 (2)0.0372 (5)
C60.3690 (3)0.2344 (2)0.49419 (19)0.0365 (5)
C70.2306 (3)0.1639 (2)0.5453 (2)0.0433 (5)
H70.09370.15540.50090.052*
C80.2912 (3)0.1088 (2)0.6565 (2)0.0438 (6)
H80.19610.06080.68510.053*
C90.4976 (3)0.1238 (2)0.7294 (2)0.0386 (5)
C100.6397 (3)0.1961 (2)0.6838 (2)0.0370 (5)
C110.8449 (3)0.2185 (3)0.7606 (2)0.0506 (6)
H110.94000.26680.73210.061*
C120.9047 (4)0.1696 (3)0.8761 (3)0.0600 (7)
H121.03970.18720.92700.072*
C130.7640 (4)0.0933 (3)0.9182 (2)0.0564 (7)
H130.80680.05740.99550.068*
C140.5661 (3)0.0711 (3)0.8475 (2)0.0479 (6)
H140.47430.02070.87700.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0575 (12)0.0489 (11)0.0329 (9)0.0084 (9)0.0176 (8)0.0215 (8)
O10.0585 (10)0.0695 (11)0.0386 (8)0.0082 (8)0.0167 (7)0.0329 (7)
O20.0468 (9)0.0664 (10)0.0556 (10)0.0120 (7)0.0240 (7)0.0362 (8)
C10.0570 (13)0.0519 (13)0.0402 (12)0.0112 (10)0.0242 (10)0.0234 (10)
C20.0573 (14)0.0482 (12)0.0360 (12)0.0094 (11)0.0180 (10)0.0188 (9)
C30.0498 (12)0.0394 (11)0.0345 (11)0.0036 (9)0.0159 (9)0.0121 (9)
C40.0544 (15)0.0897 (19)0.0525 (14)0.0030 (13)0.0111 (11)0.0397 (13)
C50.0447 (12)0.0363 (11)0.0393 (11)0.0080 (9)0.0219 (9)0.0152 (9)
C60.0443 (12)0.0380 (11)0.0313 (10)0.0048 (9)0.0155 (9)0.0124 (8)
C70.0434 (12)0.0523 (13)0.0374 (11)0.0003 (10)0.0131 (9)0.0178 (10)
C80.0487 (13)0.0495 (13)0.0404 (12)−0.0015 (10)0.0203 (10)0.0182 (10)
C90.0505 (13)0.0354 (11)0.0375 (11)0.0105 (9)0.0202 (9)0.0149 (9)
C100.0438 (12)0.0367 (11)0.0379 (11)0.0138 (9)0.0177 (9)0.0157 (9)
C110.0466 (13)0.0589 (14)0.0597 (14)0.0164 (11)0.0218 (11)0.0315 (11)
C120.0498 (14)0.0742 (17)0.0654 (16)0.0220 (12)0.0132 (12)0.0376 (13)
C130.0643 (16)0.0638 (15)0.0534 (14)0.0232 (12)0.0170 (12)0.0356 (12)
C140.0621 (15)0.0493 (13)0.0455 (13)0.0138 (11)0.0239 (11)0.0262 (10)

Geometric parameters (Å, °)

N1—C31.285 (3)C5—C101.427 (3)
N1—O11.398 (2)C6—C71.423 (3)
O1—C11.425 (2)C7—C81.357 (3)
O2—C51.350 (2)C7—H70.9300
O2—H20.8200C8—C91.415 (3)
C1—C21.503 (3)C8—H80.9300
C1—H1A0.9700C9—C101.413 (3)
C1—H1B0.9700C9—C141.414 (3)
C2—C2i1.509 (4)C10—C111.414 (3)
C2—H2A0.9700C11—C121.365 (3)
C2—H2B0.9700C11—H110.9300
C3—C61.475 (3)C12—C131.400 (3)
C3—C41.498 (3)C12—H120.9300
C4—H4A0.9600C13—C141.354 (3)
C4—H4B0.9600C13—H130.9300
C4—H4C0.9600C14—H140.9300
C5—C61.394 (3)
C3—N1—O1113.72 (17)C5—C6—C7117.71 (18)
N1—O1—C1109.26 (15)C5—C6—C3122.01 (18)
C5—O2—H2109.5C7—C6—C3120.26 (18)
O1—C1—C2107.96 (18)C8—C7—C6122.4 (2)
O1—C1—H1A110.1C8—C7—H7118.8
C2—C1—H1A110.1C6—C7—H7118.8
O1—C1—H1B110.1C7—C8—C9120.59 (19)
C2—C1—H1B110.1C7—C8—H8119.7
H1A—C1—H1B108.4C9—C8—H8119.7
C1—C2—C2i112.2 (2)C10—C9—C14118.88 (19)
C1—C2—H2A109.2C10—C9—C8118.87 (17)
C2i—C2—H2A109.2C14—C9—C8122.24 (19)
C1—C2—H2B109.2C9—C10—C11118.88 (18)
C2i—C2—H2B109.2C9—C10—C5119.50 (18)
H2A—C2—H2B107.9C11—C10—C5121.61 (19)
N1—C3—C6116.56 (18)C12—C11—C10120.5 (2)
N1—C3—C4122.53 (18)C12—C11—H11119.8
C6—C3—C4120.91 (18)C10—C11—H11119.8
C3—C4—H4A109.5C11—C12—C13120.4 (2)
C3—C4—H4B109.5C11—C12—H12119.8
H4A—C4—H4B109.5C13—C12—H12119.8
C3—C4—H4C109.5C14—C13—C12120.6 (2)
H4A—C4—H4C109.5C14—C13—H13119.7
H4B—C4—H4C109.5C12—C13—H13119.7
O2—C5—C6122.92 (17)C13—C14—C9120.8 (2)
O2—C5—C10116.22 (18)C13—C14—H14119.6
C6—C5—C10120.86 (18)C9—C14—H14119.6
C3—N1—O1—C1176.83 (17)C7—C8—C9—C14178.56 (19)
N1—O1—C1—C2178.10 (15)C14—C9—C10—C11−2.1 (3)
O1—C1—C2—C2i176.3 (2)C8—C9—C10—C11176.85 (18)
O1—N1—C3—C6178.15 (15)C14—C9—C10—C5178.64 (16)
O1—N1—C3—C4−2.3 (3)C8—C9—C10—C5−2.4 (3)
O2—C5—C6—C7177.98 (17)O2—C5—C10—C9−176.58 (16)
C10—C5—C6—C7−2.5 (3)C6—C5—C10—C93.8 (3)
O2—C5—C6—C3−0.4 (3)O2—C5—C10—C114.2 (3)
C10—C5—C6—C3179.16 (17)C6—C5—C10—C11−175.34 (18)
N1—C3—C6—C57.8 (3)C9—C10—C11—C120.5 (3)
C4—C3—C6—C5−171.77 (19)C5—C10—C11—C12179.74 (19)
N1—C3—C6—C7−170.53 (17)C10—C11—C12—C131.5 (4)
C4—C3—C6—C79.9 (3)C11—C12—C13—C14−2.0 (4)
C5—C6—C7—C8−0.4 (3)C12—C13—C14—C90.3 (3)
C3—C6—C7—C8178.04 (18)C10—C9—C14—C131.7 (3)
C6—C7—C8—C91.8 (3)C8—C9—C14—C13−177.2 (2)
C7—C8—C9—C10−0.4 (3)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.842.557 (2)145

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2505).

References

  • Atwood, D. A. & Harvey, M. J. (2001). Chem. Rev.101, 37–52. [PubMed]
  • Dong, W.-K., He, X.-N., Dong, C.-M., Wang, L., Zhong, J.-K., Chen, X. & Yu, T.-Z. (2007). Z. Kristallogr. New Cryst. Struct.222, 289–290.
  • Dong, W.-K., He, X.-N., Sun, Y.-X., Xu, L. & Guan, Y.-H. (2008). Acta Cryst. E64, o1917. [PMC free article] [PubMed]
  • Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography