PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1413.
Published online 2009 May 29. doi:  10.1107/S1600536809019291
PMCID: PMC2969529

6-Bromo-3,3-dichloro-1-methyl-1H-2,1-benzothia­zin-4(3H)-one 2,2-dioxide

Abstract

The monomeric title compound, C9H6BrCl2NO3S, has an envelope-shaped thia­zine ring with the S atom 0.879 (9) Å out of the mean square plane of the envelope. The π–π distances between the centroids of the heterocyclic rings are 4.191 (5) and 4.110 (5) Å. The closest intermolecular inter­actions between the O atoms of the carbonyl and sulfonyl groups with Br and Cl atoms are 2.987 (7) and 2.992 (8) Å, respectively.

Related literature

For halogination (chlorination or bromination) of 1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide, see: Shafiq et al. (2008 [triangle]); Shafiq, Tahir, Khan, Ahmad et al. (2009 [triangle]); Shafiq, Tahir, Khan, Arshad & Asghar (2009 [triangle]); Shafiq, Tahir, Khan, Arshad & Safdar (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1413-scheme1.jpg

Experimental

Crystal data

  • C9H6BrCl2NO3S
  • M r = 359.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1413-efi1.jpg
  • a = 7.0285 (9) Å
  • b = 14.865 (2) Å
  • c = 11.9739 (18) Å
  • β = 92.418 (5)°
  • V = 1249.9 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.88 mm−1
  • T = 296 K
  • 0.26 × 0.14 × 0.12 mm

Data collection

  • Bruker Kappa-APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.529, T max = 0.626
  • 11409 measured reflections
  • 2317 independent reflections
  • 1595 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082
  • wR(F 2) = 0.249
  • S = 1.09
  • 2317 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 2.07 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019291/ng2585sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019291/ng2585Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MS gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a scholarship under the Indigenous PhD Program (PIN 042-120567-PS2-276).

supplementary crystallographic information

Comment

We have reported crystal structures of the synthesized derivatives of the benzothiazine molecules which have halogen substitutions (Shafiq et al., 2008; Shafiq, Tahir, Khan Ahmad et al., 2009; Shafiq, Tahir, Khan, Arshad & Asghar, 2009; Shafiq, Tahir, Khan, Arshad & Safdar, 2009). In continuation to the halogenation of our synthesized benzothiazines, we herein report the title compound (I), (Fig. 1).

(I) is closely related to the crystal structure of 3,3-Dichloro-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide, (II), (Shafiq, Tahir, Khan, Ahmad et al., 2009). (I) differs from (II) due to methyl moiety at N-atom instead of ethyl and the attachement of Br-atom to the benzene ring. The title compound is from one of those compounds which have high order of steric hinderences. This is why, the R-values remain higher.

In (I), the heterocyclic ring A (C1/C6/N1/S1/C8/C9) is in the twisted form, with the maximum puckering amplitude QT = 0.604 (7) Å (Cremer & Pople, 1975). The molecules are stabilized due to weak intramolecular H-bonding (Table 1) and π—π interactions between the centroids (CgA) of ring A. The distance between CgA···CgAi [symmetry code: i = 1 - x, 1 - y, 1 - z] is 4.191 (5) Å, whereas it is 4.110 (5) Å for CgA···CgAii [symmetry code: i = 1 - x, 1 - y, 1 - z]. The stacking of molecules is shown in Fig 2. The Br-atom is at a distance of -0.07 (1) Å from the mean square plane of benzene ring B (C1—C6) and the S-atom is at a distance of -0.879 (9) Å from the mean square plane of group C (C1/C6/N1/C8/C9).

Experimental

The title compound was prepared following the method as reported in Shafiq, Tahir, Khan, Ahmad et al. (2009). A mixture was prepared from 6-bromo-1-methyl-1 H-2,1-benzothiazin-4(3H)-one 2,2-dioxide (250 mg, 0.862 mmol) (Shafiq, Tahir, Khan, Arshad & Asghar, 2009), N-Chloro Succinamide (225.85 mg, 1.724 mmol) and Benzoylperoxide (11.99 mg, 0.0495 mmol) in Carbon Tetra Chloride (10 ml). The mixture was heated under reflux (353 K) for two h. CCl4 was evaporated under reduced pressure and the residue obtained was recrystallized from mixture of ethanol:ethyl acetate (1:1).

Refinement

H-atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aryl and methyl H, respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aryl and 1.5 for methyl H atoms.

In difference Fourier map, three peaks of electron density 2.07, 1.87 and 1.86 e Å-3 exist which are at distance of 1.09, 1.09 and 1.42 Å from the BR1, BR1 and CL2, respectively.

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.
Fig. 2.
The partial packing (PLATON; Spek, 2009) which shows that molecules are stacked up with π–π interaction between the heterocyclic rings.

Crystal data

C9H6BrCl2NO3SF(000) = 704
Mr = 359.02Dx = 1.908 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2317 reflections
a = 7.0285 (9) Åθ = 2.7–25.5°
b = 14.865 (2) ŵ = 3.88 mm1
c = 11.9739 (18) ÅT = 296 K
β = 92.418 (5)°Needle, yellow
V = 1249.9 (3) Å30.26 × 0.14 × 0.12 mm
Z = 4

Data collection

Bruker Kappa-APEXII CCD diffractometer2317 independent reflections
Radiation source: fine-focus sealed tube1595 reflections with I > 2σ(I)
graphiteRint = 0.048
Detector resolution: 7.80 pixels mm-1θmax = 25.5°, θmin = 2.7°
ω scansh = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −17→18
Tmin = 0.529, Tmax = 0.626l = −14→14
11409 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.249H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.1412P)2 + 3.7083P] where P = (Fo2 + 2Fc2)/3
2317 reflections(Δ/σ)max < 0.000
155 parametersΔρmax = 2.07 e Å3
0 restraintsΔρmin = −0.45 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.74792 (15)0.56286 (7)0.70311 (9)0.0672 (4)
Cl10.7616 (5)0.06220 (15)0.4704 (3)0.0880 (13)
Cl20.4591 (4)0.1801 (2)0.3853 (3)0.0812 (11)
S10.8566 (4)0.20955 (15)0.3260 (2)0.0605 (9)
O11.0377 (10)0.2088 (5)0.3836 (7)0.073 (3)
O20.8231 (13)0.1591 (5)0.2266 (7)0.092 (3)
O30.7221 (14)0.2086 (5)0.6253 (6)0.086 (3)
N10.7709 (10)0.3103 (5)0.3049 (5)0.047 (3)
C10.7428 (11)0.3339 (5)0.5055 (7)0.041 (2)
C20.7384 (11)0.3928 (6)0.5972 (7)0.046 (3)
C30.7472 (11)0.4837 (5)0.5800 (7)0.045 (3)
C40.7598 (12)0.5177 (5)0.4732 (8)0.050 (3)
C50.7673 (12)0.4611 (5)0.3832 (7)0.046 (3)
C60.7602 (10)0.3681 (5)0.3979 (6)0.037 (2)
C70.7331 (16)0.3430 (8)0.1909 (7)0.069 (4)
C80.7023 (14)0.1722 (5)0.4321 (8)0.055 (3)
C90.7248 (12)0.2370 (6)0.5326 (7)0.048 (3)
H20.729510.370070.669130.0547*
H40.763190.579570.462340.0596*
H50.777150.484840.311820.0551*
H7A0.837030.380080.169170.1043*
H7B0.719690.292730.140860.1043*
H7C0.617670.377620.187860.1043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0732 (8)0.0623 (7)0.0664 (7)−0.0014 (4)0.0073 (5)−0.0331 (5)
Cl10.140 (3)0.0300 (12)0.094 (2)0.0046 (13)0.006 (2)0.0024 (12)
Cl20.0585 (16)0.098 (2)0.086 (2)−0.0217 (14)−0.0094 (14)−0.0057 (16)
S10.0730 (18)0.0455 (13)0.0641 (15)0.0053 (11)0.0174 (13)−0.0116 (11)
O10.047 (4)0.076 (5)0.096 (5)0.017 (3)0.005 (4)−0.008 (4)
O20.136 (7)0.063 (5)0.078 (5)−0.002 (5)0.028 (5)−0.035 (4)
O30.164 (8)0.048 (4)0.046 (4)0.001 (4)0.006 (4)0.012 (3)
N10.075 (5)0.036 (4)0.031 (4)0.003 (3)0.005 (3)−0.002 (3)
C10.045 (4)0.034 (4)0.043 (4)0.000 (3)0.002 (3)−0.001 (3)
C20.056 (5)0.048 (5)0.033 (4)−0.002 (4)0.001 (4)−0.001 (4)
C30.051 (5)0.034 (4)0.049 (5)0.000 (3)−0.003 (4)−0.014 (4)
C40.057 (5)0.031 (4)0.061 (6)0.003 (4)0.008 (4)0.003 (4)
C50.068 (6)0.034 (4)0.037 (4)0.001 (4)0.005 (4)0.001 (3)
C60.041 (4)0.042 (4)0.029 (4)0.003 (3)0.002 (3)−0.001 (3)
C70.102 (8)0.073 (7)0.033 (5)0.014 (6)0.002 (5)−0.001 (4)
C80.082 (7)0.028 (4)0.054 (5)−0.006 (4)0.002 (5)−0.001 (4)
C90.059 (5)0.041 (4)0.044 (5)0.000 (4)−0.001 (4)0.003 (4)

Geometric parameters (Å, °)

Br1—C31.886 (8)C1—C91.483 (12)
Cl1—C81.744 (8)C2—C31.369 (12)
Cl2—C81.780 (10)C3—C41.381 (12)
S1—O11.422 (8)C4—C51.370 (12)
S1—O21.418 (8)C5—C61.395 (11)
S1—N11.630 (8)C8—C91.544 (12)
S1—C81.793 (10)C2—H20.9300
O3—C91.189 (11)C4—H40.9300
N1—C61.411 (10)C5—H50.9300
N1—C71.463 (11)C7—H7A0.9600
C1—C21.406 (12)C7—H7B0.9600
C1—C61.395 (11)C7—H7C0.9600
Br1···O3i2.987 (7)C3···C4ii3.593 (12)
Br1···C5ii3.741 (9)C3···C4iii3.550 (12)
Br1···C5iii3.620 (9)C3···C5iii3.519 (11)
Br1···H7Cii3.0600C4···O2ix3.219 (12)
Cl1···O13.125 (8)C4···C3ii3.593 (12)
Cl1···O23.300 (9)C4···C3iii3.550 (12)
Cl1···O32.880 (8)C4···C4iii3.451 (12)
Cl2···O1iv2.992 (8)C5···Br1ii3.741 (9)
Cl2···O23.266 (9)C5···Br1iii3.620 (9)
Cl2···O33.377 (9)C5···O2ix3.275 (11)
Cl2···N13.107 (8)C5···C3iii3.519 (11)
Cl2···C63.505 (8)C6···Cl23.505 (8)
Cl2···H2v3.0800C5···H7C2.8100
O1···Cl13.125 (8)C5···H7A2.8900
O1···Cl2vi2.992 (8)C7···H52.5700
O1···C13.184 (11)H2···O32.4600
O2···Cl13.300 (9)H2···Cl2x3.0800
O2···Cl23.266 (9)H4···O2ix2.6000
O2···C4vii3.219 (12)H5···C72.5700
O2···C5vii3.275 (11)H5···H7A2.3600
O3···Cl23.377 (9)H5···H7C2.4200
O3···Cl12.880 (8)H5···O2ix2.7200
O3···Br1viii2.987 (7)H7A···C52.8900
O2···H7B2.3400H7A···H52.3600
O2···H5vii2.7200H7B···O22.3400
O2···H4vii2.6000H7C···C52.8100
O3···H22.4600H7C···H52.4200
N1···Cl23.107 (8)H7C···Br1ii3.0600
C1···O13.184 (11)
O1—S1—O2121.1 (5)Cl1—C8—Cl2111.1 (5)
O1—S1—N1113.6 (4)Cl1—C8—S1109.4 (5)
O1—S1—C8102.1 (5)Cl1—C8—C9111.4 (6)
O2—S1—N1108.0 (4)Cl2—C8—S1111.0 (5)
O2—S1—C8110.3 (5)Cl2—C8—C9105.6 (6)
N1—S1—C899.4 (4)S1—C8—C9108.3 (6)
S1—N1—C6118.0 (5)O3—C9—C1123.7 (8)
S1—N1—C7120.1 (6)O3—C9—C8120.1 (8)
C6—N1—C7121.4 (7)C1—C9—C8116.2 (7)
C2—C1—C6120.0 (7)C1—C2—H2120.00
C2—C1—C9115.4 (7)C3—C2—H2120.00
C6—C1—C9124.6 (7)C3—C4—H4120.00
C1—C2—C3119.7 (8)C5—C4—H4120.00
Br1—C3—C2119.8 (6)C4—C5—H5120.00
Br1—C3—C4119.8 (6)C6—C5—H5120.00
C2—C3—C4120.4 (8)N1—C7—H7A109.00
C3—C4—C5120.6 (7)N1—C7—H7B109.00
C4—C5—C6120.4 (7)N1—C7—H7C109.00
N1—C6—C1121.1 (7)H7A—C7—H7B109.00
N1—C6—C5120.0 (7)H7A—C7—H7C109.00
C1—C6—C5118.9 (7)H7B—C7—H7C109.00
O1—S1—N1—C6−52.8 (7)C2—C1—C6—N1178.0 (7)
O1—S1—N1—C7118.5 (8)C2—C1—C6—C5−1.9 (11)
O2—S1—N1—C6169.9 (6)C9—C1—C6—N1−3.0 (12)
O2—S1—N1—C7−18.7 (9)C9—C1—C6—C5177.1 (8)
C8—S1—N1—C654.9 (7)C2—C1—C9—O3−5.9 (13)
C8—S1—N1—C7−133.8 (7)C2—C1—C9—C8172.1 (7)
O1—S1—C8—Cl1−64.1 (6)C6—C1—C9—O3175.1 (9)
O1—S1—C8—Cl2173.0 (5)C6—C1—C9—C8−6.9 (12)
O1—S1—C8—C957.5 (7)C1—C2—C3—Br1−178.4 (6)
O2—S1—C8—Cl165.9 (6)C1—C2—C3—C40.2 (12)
O2—S1—C8—Cl2−57.0 (6)Br1—C3—C4—C5177.3 (6)
O2—S1—C8—C9−172.5 (6)C2—C3—C4—C5−1.2 (12)
N1—S1—C8—Cl1179.2 (5)C3—C4—C5—C60.7 (13)
N1—S1—C8—Cl256.3 (5)C4—C5—C6—N1−179.1 (7)
N1—S1—C8—C9−59.3 (6)C4—C5—C6—C10.8 (12)
S1—N1—C6—C1−27.0 (10)Cl1—C8—C9—O3−21.8 (12)
S1—N1—C6—C5152.9 (6)Cl1—C8—C9—C1160.1 (6)
C7—N1—C6—C1161.8 (8)Cl2—C8—C9—O398.9 (9)
C7—N1—C6—C5−18.3 (11)Cl2—C8—C9—C1−79.2 (8)
C6—C1—C2—C31.4 (12)S1—C8—C9—O3−142.1 (8)
C9—C1—C2—C3−177.7 (7)S1—C8—C9—C139.8 (9)

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) x−1, y, z; (v) x−1/2, −y+1/2, z−1/2; (vi) x+1, y, z; (vii) −x+3/2, y−1/2, −z+1/2; (viii) −x+3/2, y−1/2, −z+3/2; (ix) −x+3/2, y+1/2, −z+1/2; (x) x+1/2, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7B···O20.96002.34002.834 (14)112.00

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2585).

References

  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Arshad, M. N. (2009). Acta Cryst. E65, o430. [PMC free article] [PubMed]
  • Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008). Acta Cryst. E64, o1270. [PMC free article] [PubMed]
  • Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Asghar, M. N. (2009). Acta Cryst. E65, o1182. [PMC free article] [PubMed]
  • Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009). Acta Cryst. E65, o393. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography