PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 June 1; 65(Pt 6): o1403.
Published online 2009 May 29. doi:  10.1107/S1600536809017899
PMCID: PMC2969525

4,5-Bis(1H-tetra­zol-5-yl)-1H-imidazole monohydrate

Abstract

The title compound, C5H4N10·H2O, is composed of three five-membered rings that are essentially coplanar, the dihedral angles between the imidazole ring and the tetra­zole rings being 3.5 (2) and 3.0 (2)°. In the crystal, inter­molecular O—H(...)N, N—H(...)O and N—H(...)N hydrogen bonds lead to the formation of a three-dimensional network. An intra­molecular N—H(...)N hydrogen bond is also present.

Related literature

For the example of a zinc complex by reaction of the title compound as ligand, see: Zhao et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1403-scheme1.jpg

Experimental

Crystal data

  • C5H4N10·H2O
  • M r = 222.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1403-efi1.jpg
  • a = 15.607 (3) Å
  • b = 3.6706 (7) Å
  • c = 18.127 (7) Å
  • β = 119.13 (2)°
  • V = 907.1 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 294 K
  • 0.08 × 0.08 × 0.03 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.892, T max = 0.990
  • 7767 measured reflections
  • 1785 independent reflections
  • 1362 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.071
  • wR(F 2) = 0.201
  • S = 1.06
  • 1785 reflections
  • 153 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017899/im2114sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017899/im2114Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to the Starter Fund of Southeast University for financial support to buy the CCD X-ray diffractometer.

supplementary crystallographic information

Comment

The crystal data show that in the title compound, C5H4N10 × H2O, the molecule is essentially planar with dihedral angles between imidazole and the tetrazole rings of 3.5 (2)° and 3.0 (2)°, respectively.

Intramolecular hydrogen bonds between the tetrazole rings determine the conformation of the molecule. It is also interesting to note that strong intermolecular have been found between the tetrazole and imidazole rings towards the solvent water molecules. This results in the formation of a three-dimensional network, as shown in Figure 2.

Experimental

NaN3 (0.975 g,15 mmol) and NH4Cl (0.587 g, 11 mmol) were added to a solution of (4,5-Dicyano)-imidazole (1.18 g,10 mmol) in DMF (25 ml) under magnetic stirring in an oil bath. The resulting mixture was heated to 90°C for 8 h until the starting material was fully consumed as shown with the help of TLC detection. The mixture was allowed to cool to room temperature and acidified to pH = 2 with 1M aqueous HCl. The resulting precipitate was collected, washed with a small amount of water and dried at 60°C for 12 h. Colorless crystals of the title compound suitable for X-ray diffraction were obtained from an ethanolic solution after one week.

Refinement

Positional parameters of all the H atoms bonded to C and N atoms were calculated geometrically with Uiso(H) = 1.2Ueq(C,N). The O—H hydrogen atoms of the water molecule were located in a difference Fourier map and refined freely with isotropic temperature factors.

Figures

Fig. 1.
The molecular structure of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Three-dimensional network of the title compound viewed along a axis.

Crystal data

C5H4N10·H2OF(000) = 456
Mr = 222.20Dx = 1.627 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2076 reflections
a = 15.607 (3) Åθ = 2.0–27.5°
b = 3.6706 (7) ŵ = 0.13 mm1
c = 18.127 (7) ÅT = 294 K
β = 119.13 (2)°Block, colorless
V = 907.1 (5) Å30.08 × 0.08 × 0.03 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer1785 independent reflections
Radiation source: fine-focus sealed tube1362 reflections with I > 2σ(I)
graphiteRint = 0.061
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω scansh = −19→19
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −4→4
Tmin = 0.892, Tmax = 0.990l = −22→22
7767 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0998P)2 + 1.6707P] where P = (Fo2 + 2Fc2)/3
1785 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1W0.6668 (2)1.0057 (9)0.61964 (19)0.0429 (8)
N50.4974 (2)0.4374 (9)0.67749 (19)0.0313 (8)
N60.40302 (19)0.3471 (9)0.64859 (17)0.0260 (7)
H6A0.37940.25190.67830.031*
N90.2305 (2)−0.0391 (9)0.73314 (18)0.0305 (7)
N100.2612 (2)0.0904 (9)0.68015 (18)0.0267 (7)
N10.0913 (2)0.2414 (9)0.45237 (17)0.0270 (7)
N70.1017 (2)0.0035 (9)0.61097 (18)0.0302 (8)
H7A0.0420−0.00630.57090.036*
N80.1358 (2)−0.0896 (10)0.69193 (19)0.0337 (8)
N40.5023 (2)0.5693 (9)0.61343 (19)0.0294 (7)
N20.2075 (2)0.4482 (8)0.42653 (17)0.0263 (7)
H2A0.23710.53170.40060.032*
N30.4130 (2)0.5680 (8)0.54265 (17)0.0267 (7)
C10.1142 (3)0.3667 (11)0.3940 (2)0.0314 (9)
H1A0.06880.39240.33710.038*
C50.3516 (2)0.4283 (9)0.5666 (2)0.0201 (7)
C40.1794 (2)0.1138 (9)0.6055 (2)0.0212 (7)
C20.2476 (2)0.3706 (9)0.5112 (2)0.0209 (7)
C30.1767 (2)0.2407 (9)0.5288 (2)0.0211 (7)
H1W0.698 (3)1.123 (14)0.670 (2)0.067 (16)*
H2W0.635 (3)1.117 (14)0.568 (2)0.069 (17)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1W0.0462 (18)0.0463 (18)0.0335 (17)−0.0038 (14)0.0172 (15)0.0008 (14)
N50.0211 (15)0.044 (2)0.0262 (16)−0.0073 (13)0.0094 (13)−0.0022 (14)
N60.0198 (14)0.0368 (17)0.0210 (14)−0.0051 (13)0.0095 (12)0.0011 (12)
N90.0284 (16)0.0370 (18)0.0242 (15)−0.0031 (13)0.0114 (13)0.0054 (13)
N100.0215 (14)0.0366 (17)0.0201 (14)−0.0032 (13)0.0088 (12)0.0036 (13)
N10.0198 (14)0.0370 (18)0.0192 (14)−0.0032 (13)0.0055 (12)0.0010 (13)
N70.0207 (15)0.0437 (19)0.0223 (15)−0.0063 (13)0.0074 (12)0.0039 (13)
N80.0302 (17)0.046 (2)0.0254 (16)−0.0057 (15)0.0142 (14)0.0056 (14)
N40.0236 (15)0.0361 (18)0.0273 (16)−0.0066 (13)0.0114 (13)−0.0014 (13)
N20.0244 (15)0.0352 (17)0.0211 (15)−0.0028 (13)0.0125 (13)0.0034 (13)
N30.0209 (14)0.0338 (17)0.0238 (15)−0.0041 (13)0.0097 (13)0.0004 (13)
C10.0250 (18)0.045 (2)0.0185 (17)−0.0020 (16)0.0058 (15)0.0032 (15)
C50.0208 (16)0.0219 (16)0.0199 (16)−0.0018 (13)0.0117 (14)−0.0015 (13)
C40.0199 (16)0.0236 (17)0.0192 (16)−0.0014 (14)0.0087 (13)0.0008 (13)
C20.0206 (16)0.0222 (17)0.0177 (16)−0.0023 (13)0.0076 (13)−0.0028 (13)
C30.0168 (15)0.0263 (18)0.0193 (16)0.0016 (13)0.0081 (13)0.0003 (14)

Geometric parameters (Å, °)

O1W—H1W0.91 (2)N7—N81.339 (4)
O1W—H2W0.91 (2)N7—H7A0.8600
N5—N41.294 (4)N4—N31.359 (4)
N5—N61.343 (4)N2—C11.313 (4)
N6—C51.335 (4)N2—C21.375 (4)
N6—H6A0.8600N2—H2A0.8600
N9—N81.303 (4)N3—C51.332 (4)
N9—N101.352 (4)C1—H1A0.9300
N10—C41.336 (4)C5—C21.450 (4)
N1—C11.351 (5)C4—C31.446 (4)
N1—C31.378 (4)C2—C31.378 (5)
N7—C41.327 (4)
H1W—O1W—H2W125 (5)C5—N3—N4105.3 (3)
N4—N5—N6105.9 (3)N2—C1—N1112.6 (3)
C5—N6—N5109.3 (3)N2—C1—H1A123.7
C5—N6—H6A125.4N1—C1—H1A123.7
N5—N6—H6A125.4N3—C5—N6108.1 (3)
N8—N9—N10109.7 (3)N3—C5—C2124.8 (3)
C4—N10—N9104.4 (3)N6—C5—C2127.1 (3)
C1—N1—C3107.0 (3)N7—C4—N10111.2 (3)
C4—N7—N8105.6 (3)N7—C4—C3124.7 (3)
C4—N7—H7A127.2N10—C4—C3124.1 (3)
N8—N7—H7A127.2N2—C2—C3110.5 (3)
N9—N8—N7109.1 (3)N2—C2—C5119.4 (3)
N5—N4—N3111.4 (3)C3—C2—C5130.1 (3)
C1—N2—C2104.8 (3)C2—C3—N1105.0 (3)
C1—N2—H2A127.6C2—C3—C4133.1 (3)
C2—N2—H2A127.6N1—C3—C4121.9 (3)
N4—N5—N6—C5−0.3 (4)C1—N2—C2—C30.1 (4)
N8—N9—N10—C40.1 (4)C1—N2—C2—C5179.6 (3)
N10—N9—N8—N70.2 (4)N3—C5—C2—N22.9 (5)
C4—N7—N8—N9−0.4 (4)N6—C5—C2—N2−175.6 (3)
N6—N5—N4—N30.0 (4)N3—C5—C2—C3−177.6 (4)
N5—N4—N3—C50.3 (4)N6—C5—C2—C33.8 (6)
C2—N2—C1—N10.1 (4)N2—C2—C3—N1−0.2 (4)
C3—N1—C1—N2−0.2 (5)C5—C2—C3—N1−179.6 (3)
N4—N3—C5—N6−0.5 (4)N2—C2—C3—C4178.4 (3)
N4—N3—C5—C2−179.2 (3)C5—C2—C3—C4−1.1 (6)
N5—N6—C5—N30.5 (4)C1—N1—C3—C20.2 (4)
N5—N6—C5—C2179.2 (3)C1—N1—C3—C4−178.6 (3)
N8—N7—C4—N100.5 (4)N7—C4—C3—C2178.5 (4)
N8—N7—C4—C3−179.9 (3)N10—C4—C3—C2−1.9 (6)
N9—N10—C4—N7−0.3 (4)N7—C4—C3—N1−3.1 (5)
N9—N10—C4—C3−179.9 (3)N10—C4—C3—N1176.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2W···N3i0.91 (2)2.12 (2)3.014 (4)169 (5)
N2—H2A···O1Wi0.862.413.188 (4)151
O1W—H1W···N9ii0.91 (2)1.99 (2)2.884 (4)169 (5)
N7—H7A···N1iii0.862.102.799 (4)139
N6—H6A···N100.861.952.711 (4)146

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, y+3/2, −z+3/2; (iii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2114).

References

  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem.630, 1367–1370.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography