PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1502.
Published online 2009 June 6. doi:  10.1107/S1600536809020182
PMCID: PMC2969512

(E)-2-(2,4-Dihydroxy­benzyl­ideneamino)benzonitrile

Abstract

The mol­ecule of the title compound, C14H10N2O2, adopts the phenol–imine tautomeric form. The dihedral angle between the planes of the two benzene rings is 13.84 (13)°. A strong intra­molecular O—H(...)N hydrogen-bonding inter­action stabilizes the mol­ecular conformation. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers by inter­molecular C—H(...)O and O—H(...)N hydrogen bonds.

Related literature

For the crystal structures of related compounds, see: Cheng et al. (2006 [triangle]); Xia et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1502-scheme1.jpg

Experimental

Crystal data

  • C14H10N2O2
  • M r = 238.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1502-efi1.jpg
  • a = 13.322 (3) Å
  • b = 5.7505 (12) Å
  • c = 16.132 (3) Å
  • β = 108.97 (3)°
  • V = 1168.7 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.973, T max = 0.979
  • 11536 measured reflections
  • 2683 independent reflections
  • 1394 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.153
  • S = 1.01
  • 2683 reflections
  • 167 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809020182/rz2327sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020182/rz2327Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff base compounds have attracted great attention and have been extensively investigated due to their important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures. Herein, the synthesis and crystal structure of the title compound is reported.

The molecular structure of the title compound is shown in Fig. 1. The Schiff-base molecule adopts a non-planar conformation, with the dihedral angle between the two aromatic rings of 13.84 (13)°, and displays a trans configuration with respect to the C8=N2 double bond. Bond lengths (Allen et al., 1987) and angles are normal and in good agreement with those reported for 5-chloro-2-(2-hydroxybenzylideneamino)benzonitrile (Cheng et al., 2006) and 2-(2-hydroxybenzylideneamino)benzonitrile (Xia et al., 2008). There is an strong intramolecular O—H···N hydrogen bond stabilizing the molecular conformation (Table 1). In the crystal structure (Fig. 2), centrosymmetrically related molecules are linked into dimers by intermolecular C—H···O and O—H···N hydrogen bonds (Table 1).

Experimental

The title compound was prepared by refluxing a mixture of 2,4-dihydroxybenzaldehyde (0.552 g, 4 mmol) and 2-aminobenzonitrile (0.472 g, 4 mmol) in ethanol (20 ml). The reaction mixture was refluxed for 5 h under stirring, then cooled to room temperatureand and the resulting yellow precipitate was filtered off. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

The H bound to O1 was located in a difference Fourier map and refined freely. All other H atoms were located geometrically and treated as riding atoms, with O—H= 0.82 Å, C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Packing diagram of the title compound, showing the structure along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H10N2O2F(000) = 496
Mr = 238.24Dx = 1.354 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8059 reflections
a = 13.322 (3) Åθ = 3.1–27.8°
b = 5.7505 (12) ŵ = 0.09 mm1
c = 16.132 (3) ÅT = 293 K
β = 108.97 (3)°Prism, yellow
V = 1168.7 (5) Å30.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer2683 independent reflections
Radiation source: fine-focus sealed tube1394 reflections with I > 2σ(I)
graphiteRint = 0.073
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = −17→17
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −7→7
Tmin = 0.973, Tmax = 0.979l = −20→20
11536 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0648P)2] where P = (Fo2 + 2Fc2)/3
2683 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O20.79346 (11)0.8933 (3)0.08149 (11)0.0566 (5)
H2A0.79110.76630.05780.085*
N20.33856 (14)0.9483 (3)0.12987 (11)0.0458 (5)
O10.45029 (14)0.6553 (3)0.07575 (12)0.0620 (5)
C80.41862 (18)1.0886 (4)0.14982 (14)0.0467 (6)
H8A0.41271.23270.17400.056*
C90.51588 (16)1.0290 (4)0.13590 (13)0.0413 (5)
C120.70129 (17)0.9304 (4)0.09842 (14)0.0430 (6)
C50.1263 (2)1.2217 (5)0.20046 (18)0.0709 (8)
H5A0.11641.34350.23490.085*
C30.05604 (19)0.8978 (5)0.10712 (18)0.0643 (7)
H3A−0.00040.80090.07840.077*
C10.24136 (18)1.0047 (4)0.14176 (14)0.0466 (6)
C100.52810 (17)0.8164 (4)0.09675 (14)0.0434 (6)
C140.60082 (18)1.1854 (4)0.15679 (15)0.0506 (6)
H14A0.59471.32580.18340.061*
C110.61972 (16)0.7695 (4)0.07767 (14)0.0447 (6)
H11A0.62660.63000.05090.054*
C130.69260 (18)1.1384 (4)0.13929 (15)0.0514 (6)
H13A0.74841.24430.15450.062*
C20.15547 (18)0.8609 (4)0.09949 (15)0.0500 (6)
C70.17047 (19)0.6737 (5)0.04576 (18)0.0575 (7)
N10.18114 (18)0.5237 (4)0.00325 (17)0.0777 (8)
C60.22459 (19)1.1855 (5)0.19264 (16)0.0598 (7)
H6A0.28061.28320.22180.072*
C40.0418 (2)1.0796 (5)0.15775 (18)0.0707 (8)
H4A−0.02471.10650.16320.085*
H1A0.392 (2)0.729 (5)0.0876 (17)0.090 (10)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O20.0453 (10)0.0602 (11)0.0695 (12)−0.0039 (8)0.0261 (8)−0.0088 (8)
N20.0384 (10)0.0558 (12)0.0429 (11)0.0041 (10)0.0130 (8)−0.0002 (9)
O10.0445 (10)0.0547 (11)0.0895 (14)−0.0107 (9)0.0256 (9)−0.0253 (9)
C80.0512 (14)0.0476 (14)0.0432 (14)0.0018 (12)0.0179 (11)−0.0039 (10)
C90.0415 (13)0.0418 (13)0.0405 (13)−0.0001 (11)0.0133 (10)−0.0021 (10)
C120.0384 (12)0.0508 (14)0.0401 (13)−0.0001 (11)0.0131 (10)0.0016 (10)
C50.0568 (16)0.096 (2)0.0643 (18)0.0081 (17)0.0256 (14)−0.0210 (16)
C30.0468 (15)0.0802 (19)0.0698 (18)−0.0065 (14)0.0241 (13)−0.0108 (15)
C10.0435 (13)0.0595 (15)0.0386 (13)0.0060 (12)0.0155 (10)0.0039 (11)
C100.0397 (13)0.0443 (13)0.0429 (13)−0.0042 (11)0.0092 (10)−0.0004 (10)
C140.0545 (15)0.0418 (14)0.0574 (15)−0.0033 (12)0.0209 (12)−0.0087 (11)
C110.0422 (13)0.0449 (13)0.0468 (13)0.0001 (11)0.0142 (10)−0.0082 (10)
C130.0472 (14)0.0504 (15)0.0598 (16)−0.0117 (12)0.0218 (12)−0.0073 (12)
C20.0448 (14)0.0572 (15)0.0507 (15)0.0011 (12)0.0192 (11)−0.0018 (12)
C70.0501 (15)0.0586 (17)0.0681 (18)−0.0079 (13)0.0252 (13)−0.0053 (14)
N10.0735 (17)0.0691 (16)0.0994 (19)−0.0109 (14)0.0406 (14)−0.0236 (15)
C60.0499 (15)0.0781 (19)0.0521 (15)−0.0044 (14)0.0176 (12)−0.0176 (14)
C40.0499 (16)0.099 (2)0.0692 (19)0.0031 (16)0.0278 (14)−0.0109 (16)

Geometric parameters (Å, °)

O2—C121.359 (2)C3—C41.377 (3)
O2—H2A0.8200C3—C21.386 (3)
N2—C81.292 (3)C3—H3A0.9300
N2—C11.407 (3)C1—C61.387 (3)
O1—C101.349 (3)C1—C21.397 (3)
O1—H1A0.95 (3)C10—C111.379 (3)
C8—C91.427 (3)C14—C131.368 (3)
C8—H8A0.9300C14—H14A0.9300
C9—C141.398 (3)C11—H11A0.9300
C9—C101.409 (3)C13—H13A0.9300
C12—C111.383 (3)C2—C71.436 (3)
C12—C131.389 (3)C7—N11.139 (3)
C5—C61.372 (3)C6—H6A0.9300
C5—C41.380 (4)C4—H4A0.9300
C5—H5A0.9300
C12—O2—H2A109.5O1—C10—C9121.1 (2)
C8—N2—C1123.0 (2)C11—C10—C9120.6 (2)
C10—O1—H1A104.5 (17)C13—C14—C9122.0 (2)
N2—C8—C9122.0 (2)C13—C14—H14A119.0
N2—C8—H8A119.0C9—C14—H14A119.0
C9—C8—H8A119.0C12—C11—C10119.9 (2)
C14—C9—C10117.6 (2)C12—C11—H11A120.1
C14—C9—C8120.9 (2)C10—C11—H11A120.1
C10—C9—C8121.5 (2)C14—C13—C12119.1 (2)
O2—C12—C11122.5 (2)C14—C13—H13A120.5
O2—C12—C13116.8 (2)C12—C13—H13A120.5
C11—C12—C13120.7 (2)C3—C2—C1121.4 (2)
C6—C5—C4120.8 (3)C3—C2—C7119.5 (2)
C6—C5—H5A119.6C1—C2—C7119.1 (2)
C4—C5—H5A119.6N1—C7—C2179.0 (3)
C4—C3—C2119.3 (2)C5—C6—C1120.7 (2)
C4—C3—H3A120.4C5—C6—H6A119.7
C2—C3—H3A120.4C1—C6—H6A119.7
C6—C1—C2117.9 (2)C3—C4—C5119.9 (2)
C6—C1—N2125.9 (2)C3—C4—H4A120.1
C2—C1—N2116.2 (2)C5—C4—H4A120.1
O1—C10—C11118.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.95 (3)1.70 (3)2.581 (2)152 (3)
O2—H2A···N1i0.822.032.835 (3)166
C11—H11A···O1i0.932.563.386 (3)148

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2327).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Cheng, K., Zhu, H.-L., Li, Z.-B. & Yan, Z. (2006). Acta Cryst. E62, o2417–o2418.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xia, R., Xu, H.-J. & Gong, X.-X. (2008). Acta Cryst. E64, o1047. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography