PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m724–m725.
Published online 2009 June 6. doi:  10.1107/S1600536809020406
PMCID: PMC2969510

Bis(4-amino­benzene­sulfonato-κN)diaqua­bis(dimethyl­formamide-κO)nickel(II) dihydrate

Abstract

In the title compound, [Ni(C6H6NO3S)2(C3H7NO)2(H2O)2]·2H2O, the NiII ion (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-65-0m724-efi1.jpg) is coordinated by two –NH2 groups from two 4-amino­benzene­sulfonate anions, two O atoms from two dimethyl­formamide mol­ecules and two water mol­ecules, forming a slightly distorted trans-NiN2O4 octa­hedral geometry. In the crystal structure, inter­molecular O—H(...)O, O—H(...)(O,O) and N—H(...)O hydrogen bonds link the components into a three-dimensional network. The O atoms of the sulfonate group are disordered over two sets of sites in a 0.833 (4):0.167 (4) ratio and the O atom of the uncoordinated water mol­ecule is disordered over two sites in a 0.637 (18):0.363 (18) ratio.

Related literature

For related structures, see: Zhao et al. (2007 [triangle]); Li et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m724-scheme1.jpg

Experimental

Crystal data

  • [Ni(C6H6NO3S)2(C3H7NO)2(H2O)2]·2H2O
  • M r = 621.32
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m724-efi2.jpg
  • a = 11.3197 (6) Å
  • b = 15.2174 (7) Å
  • c = 15.9061 (8) Å
  • V = 2739.9 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.92 mm−1
  • T = 296 K
  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Siemens, 1996 [triangle]) T min = 0.837, T max = 0.874
  • 13538 measured reflections
  • 2424 independent reflections
  • 1991 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.075
  • S = 1.03
  • 2424 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020406/hb2985sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020406/hb2985Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by Natural Science Foundation of Zhejiang Province for Distinguished Young Students (No. 2008R40G2190024) and Scientific Research Fund of Zhejiang Provincial Education Department (No. Y200803569).

supplementary crystallographic information

Comment

4-Aminobenzenesulfonic acid can bind to transition metals through the amino as well as the carboxylate groups (Zhao et al., 2007; Li et al., 2008). Therefore, we extended these investigations to the use of the ligand 4-aminobenzenesulfonic acid and obtained various framework structures.

In this paper, we report the structure of the title compound, (I), im which the NiII ion is located on a crystallographic inversion center and is coordinated by two –NH2 groups from two 4-aminobenzenesulfonate ligands and four oxygen atoms from two water molecules and two N,N'-dimethylformamide molecules (Table 1 and Fig. 1), forming a slightly distorted octahedral coordination environment.

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds link the title complex into a three-dimensional network (Table 2 and Fig.2).

Experimental

An ethanol solution (20 ml) containing nickel chloride (0.237 g, 1 mmol) was added dropwise to an aqueous solution containing 4-aminobenzenesulfonic acid (0.180 g, 1 mmol) and sodium hydroxide (0.040 g, 1 mmol) with stirring over a period of 10 min. The green solid compound was separated out and dissolved in N,N-dimethylformamide, then the green solution was filtrated. After 20 days, green blocks of (I) were produced from the filtrate (yield: 35.3%).

Refinement

The –SO3 group is disordered over two positions with respect to the O atoms in a 0.83 (1):0.17 (1) ratio. The solvent water molecule is also disordered over two positions in a 0.64 (4):0.46 (4) ratio. All H atoms were initially located in a difference map, then relocated to idealised positions (C—H = 0.93–0.96 Å, O—H = 0.85 Å, N—H = 0.90 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Unlabelled atoms in the complex are generated by the symmetry operation (1–x, –y, 1–z).
Fig. 2.
Part of the crystal structure of the title compound showing hydrogen bonds as dashed lines.

Crystal data

[Ni(C6H6NO3S)2(C3H7NO)2(H2O)2]·2H2OF(000) = 1304
Mr = 621.32Dx = 1.506 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4096 reflections
a = 11.3197 (6) Åθ = 2.6–25.5°
b = 15.2174 (7) ŵ = 0.92 mm1
c = 15.9061 (8) ÅT = 296 K
V = 2739.9 (2) Å3Block, green
Z = 40.20 × 0.18 × 0.15 mm

Data collection

Bruker SMART CCD diffractometer2424 independent reflections
Radiation source: fine-focus sealed tube1991 reflections with I > 2σ(I)
graphiteRint = 0.030
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Siemens, 1996)h = −12→13
Tmin = 0.837, Tmax = 0.874k = −16→18
13538 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0336P)2 + 1.5689P] where P = (Fo2 + 2Fc2)/3
2424 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.50000.00000.50000.03111 (13)
S10.64988 (5)0.40238 (4)0.68338 (4)0.04007 (17)
O10.6512 (3)0.42317 (15)0.77146 (15)0.0660 (8)0.833 (4)
O20.5613 (3)0.45099 (16)0.6392 (2)0.0928 (12)0.833 (4)
O30.7645 (2)0.41103 (15)0.64593 (19)0.0679 (9)0.833 (4)
O1'0.5600 (13)0.4437 (7)0.7240 (10)0.071 (3)0.167 (4)
O2'0.6567 (14)0.4346 (7)0.5970 (8)0.067 (3)0.167 (4)
O3'0.7703 (12)0.4053 (8)0.7150 (11)0.070 (3)0.167 (4)
O40.55301 (15)0.12118 (10)0.46049 (10)0.0419 (4)
O50.32791 (14)0.04268 (11)0.51454 (10)0.0457 (4)
H5B0.28090.01480.54660.069*
H5C0.28780.05390.47070.069*
O6A0.8209 (4)0.4456 (7)0.8924 (4)0.087 (2)0.637 (18)
O6B0.8230 (7)0.4993 (10)0.8633 (7)0.084 (4)0.363 (18)
H6B0.78860.45760.83760.125*
H6A0.88960.45910.87520.125*
N10.52928 (17)0.02527 (12)0.63186 (12)0.0364 (4)
H1A0.46360.01000.66020.044*
H1B0.5881−0.00980.64970.044*
N20.54722 (19)0.26684 (12)0.43764 (13)0.0439 (5)
C10.61336 (19)0.28983 (14)0.67466 (13)0.0342 (5)
C20.49911 (19)0.26121 (15)0.68652 (16)0.0413 (6)
H20.44040.30100.70160.050*
C30.4716 (2)0.17309 (15)0.67590 (15)0.0405 (6)
H30.39450.15390.68410.049*
C40.5583 (2)0.11367 (14)0.65318 (14)0.0340 (5)
C50.6738 (2)0.14216 (15)0.64516 (16)0.0435 (6)
H5A0.73320.10210.63260.052*
C60.7012 (2)0.22980 (15)0.65571 (16)0.0426 (6)
H60.77900.24860.65010.051*
C70.5020 (2)0.19226 (16)0.46400 (16)0.0409 (6)
H70.42640.19340.48680.049*
C80.6644 (3)0.26965 (19)0.4022 (2)0.0663 (8)
H8A0.71510.30360.43800.099*
H8B0.66130.29620.34750.099*
H8C0.69480.21100.39740.099*
C90.4834 (3)0.34922 (18)0.4453 (2)0.0702 (9)
H9A0.40830.33870.47150.105*
H9B0.47130.37400.39040.105*
H9C0.52840.38940.47900.105*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0330 (2)0.0253 (2)0.0350 (2)−0.00230 (15)−0.00010 (17)0.00224 (16)
S10.0420 (3)0.0321 (3)0.0461 (4)−0.0058 (2)0.0025 (3)−0.0025 (3)
O10.097 (2)0.0512 (14)0.0500 (15)−0.0101 (13)0.0151 (14)−0.0190 (11)
O20.091 (2)0.0413 (14)0.146 (3)−0.0075 (14)−0.059 (2)0.0242 (17)
O30.0698 (17)0.0487 (13)0.085 (2)−0.0243 (12)0.0369 (16)−0.0132 (14)
O1'0.078 (7)0.035 (5)0.099 (7)−0.015 (5)0.039 (6)−0.029 (5)
O2'0.085 (7)0.039 (5)0.075 (7)−0.011 (5)0.005 (6)0.009 (5)
O3'0.063 (6)0.052 (5)0.096 (7)−0.018 (5)−0.021 (6)−0.007 (6)
O40.0504 (10)0.0286 (8)0.0467 (10)−0.0046 (7)0.0029 (8)0.0029 (7)
O50.0366 (9)0.0494 (10)0.0512 (10)0.0032 (8)0.0009 (7)0.0064 (8)
O6A0.059 (2)0.111 (5)0.091 (4)0.009 (3)0.007 (2)−0.036 (3)
O6B0.074 (4)0.088 (7)0.089 (6)−0.017 (4)0.012 (4)−0.048 (5)
N10.0410 (10)0.0300 (9)0.0380 (11)−0.0026 (8)−0.0014 (9)0.0018 (8)
N20.0544 (12)0.0298 (11)0.0476 (12)−0.0075 (9)−0.0063 (10)0.0053 (9)
C10.0374 (12)0.0313 (11)0.0338 (12)−0.0037 (9)0.0011 (10)−0.0018 (9)
C20.0362 (12)0.0353 (13)0.0526 (15)0.0016 (10)0.0061 (11)−0.0024 (11)
C30.0320 (11)0.0388 (13)0.0506 (15)−0.0033 (10)0.0042 (10)−0.0004 (11)
C40.0393 (12)0.0313 (12)0.0315 (12)−0.0020 (9)−0.0023 (10)0.0012 (9)
C50.0352 (12)0.0363 (13)0.0591 (16)0.0026 (10)0.0025 (11)−0.0067 (11)
C60.0308 (11)0.0404 (14)0.0566 (15)−0.0060 (10)0.0027 (11)−0.0052 (11)
C70.0448 (14)0.0372 (14)0.0407 (13)−0.0053 (11)−0.0031 (11)0.0046 (11)
C80.072 (2)0.0506 (17)0.076 (2)−0.0178 (14)0.0161 (16)0.0022 (15)
C90.072 (2)0.0375 (15)0.101 (3)0.0028 (14)−0.0144 (18)0.0084 (16)

Geometric parameters (Å, °)

Ni1—O42.0385 (15)N1—H1A0.9000
Ni1—O4i2.0385 (15)N1—H1B0.9000
Ni1—O5i2.0664 (15)N2—C71.314 (3)
Ni1—O52.0664 (15)N2—C81.442 (3)
Ni1—N1i2.1579 (19)N2—C91.452 (3)
Ni1—N12.1579 (19)C1—C21.378 (3)
S1—O1'1.359 (11)C1—C61.383 (3)
S1—O21.431 (3)C2—C31.387 (3)
S1—O31.434 (2)C2—H20.9300
S1—O11.436 (2)C3—C41.382 (3)
S1—O3'1.454 (12)C3—H30.9300
S1—O2'1.461 (12)C4—C51.383 (3)
S1—C11.767 (2)C5—C61.379 (3)
O4—C71.228 (3)C5—H5A0.9300
O5—H5B0.8499C6—H60.9300
O5—H5C0.8499C7—H70.9300
O6A—O6B0.940 (10)C8—H8A0.9600
O6A—H6B0.9632C8—H8B0.9600
O6A—H6A0.8491C8—H8C0.9600
O6B—H6B0.8500C9—H9A0.9600
O6B—H6A0.9898C9—H9B0.9600
N1—C41.426 (3)C9—H9C0.9600
O4—Ni1—O4i180.0O6A—O6B—H6A52.1
O4—Ni1—O5i88.41 (7)H6B—O6B—H6A88.7
O4i—Ni1—O5i91.59 (7)C4—N1—Ni1115.77 (14)
O4—Ni1—O591.59 (7)C4—N1—H1A108.3
O4i—Ni1—O588.41 (7)Ni1—N1—H1A108.3
O5i—Ni1—O5180.0C4—N1—H1B108.3
O4—Ni1—N1i84.65 (7)Ni1—N1—H1B108.3
O4i—Ni1—N1i95.35 (7)H1A—N1—H1B107.4
O5i—Ni1—N1i88.85 (7)C7—N2—C8120.6 (2)
O5—Ni1—N1i91.15 (7)C7—N2—C9121.7 (2)
O4—Ni1—N195.35 (7)C8—N2—C9117.7 (2)
O4i—Ni1—N184.65 (7)C2—C1—C6119.7 (2)
O5i—Ni1—N191.15 (7)C2—C1—S1121.02 (17)
O5—Ni1—N188.85 (7)C6—C1—S1119.27 (17)
N1i—Ni1—N1180.0C1—C2—C3120.0 (2)
O1'—S1—O258.0 (8)C1—C2—H2120.0
O1'—S1—O3146.3 (5)C3—C2—H2120.0
O2—S1—O3112.5 (2)C4—C3—C2120.4 (2)
O1'—S1—O156.1 (8)C4—C3—H3119.8
O2—S1—O1111.9 (2)C2—C3—H3119.8
O3—S1—O1112.05 (17)C3—C4—C5119.3 (2)
O1'—S1—O3'121.5 (9)C3—C4—N1121.1 (2)
O2—S1—O3'144.2 (5)C5—C4—N1119.4 (2)
O3—S1—O3'45.0 (6)C6—C5—C4120.3 (2)
O1—S1—O3'69.2 (7)C6—C5—H5A119.9
O1'—S1—O2'109.3 (9)C4—C5—H5A119.9
O2—S1—O2'53.2 (6)C5—C6—C1120.2 (2)
O3—S1—O2'62.0 (6)C5—C6—H6119.9
O1—S1—O2'147.5 (5)C1—C6—H6119.9
O3'—S1—O2'105.4 (9)O4—C7—N2124.3 (2)
O1'—S1—C1108.1 (5)O4—C7—H7117.9
O2—S1—C1107.36 (13)N2—C7—H7117.9
O3—S1—C1105.55 (12)N2—C8—H8A109.5
O1—S1—C1107.01 (12)N2—C8—H8B109.5
O3'—S1—C1106.0 (5)H8A—C8—H8B109.5
O2'—S1—C1105.3 (5)N2—C8—H8C109.5
C7—O4—Ni1130.13 (16)H8A—C8—H8C109.5
Ni1—O5—H5B120.0H8B—C8—H8C109.5
Ni1—O5—H5C118.3N2—C9—H9A109.5
H5B—O5—H5C105.0N2—C9—H9B109.5
O6B—O6A—H6B53.0H9A—C9—H9B109.5
O6B—O6A—H6A67.0N2—C9—H9C109.5
H6B—O6A—H6A90.6H9A—C9—H9C109.5
O6A—O6B—H6B64.9H9B—C9—H9C109.5

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.902.152.992 (3)156
N1—H1B···O3iii0.902.062.919 (3)160
O5—H5B···O6Aii0.851.842.685 (5)174
O5—H5B···O6Bii0.851.872.669 (8)156
O5—H5C···O3iv0.851.952.743 (3)155
O6A—H6A···O2v0.851.962.768 (6)158
O6B—H6B···O10.851.952.694 (8)146

Symmetry codes: (ii) −x+1, y−1/2, −z+3/2; (iii) −x+3/2, y−1/2, z; (iv) x−1/2, −y+1/2, −z+1; (v) x+1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2985).

References

  • Li, Z. L., Xuan, Y. W., Wu, W. & Xie, D. P. (2008). Acta Cryst. E64, m1162–m1163. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART, SAINT and SADABS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Zhao, J., Dang, Z.-H., Wang, Y.-J., Ye, Y.-Z. & Xu, L. (2007). Acta Cryst. E63, m1773.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography