PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1633.
Published online 2009 June 20. doi:  10.1107/S1600536809022776
PMCID: PMC2969504

N-Phenyl­formamide

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C7H7NO. The conformation of the N—H bond in the structure is syn to the C=O bond in one of the mol­ecules and anti in the other. In the crystal, mol­ecules are packed into chains diagonally in the ac plane via N—H(...)O hydrogen bonds.

Related literature

For related structures, see: Gowda et al. (2006 [triangle]); Brown (1966 [triangle]). For our study of the effect of ring and side chain substitutions on the crystal structures of aromatic amides, see: Gowda et al. (2000 [triangle], 2007 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1633-scheme1.jpg

Experimental

Crystal data

  • C7H7NO
  • M r = 121.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1633-efi1.jpg
  • a = 30.923 (3) Å
  • b = 6.1737 (6) Å
  • c = 14.814 (1) Å
  • β = 113.14 (1)°
  • V = 2600.6 (4) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 K
  • 0.48 × 0.44 × 0.40 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.966, T max = 0.969
  • 8394 measured reflections
  • 2383 independent reflections
  • 1679 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.115
  • S = 1.12
  • 2383 reflections
  • 170 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.11 e Å−3
  • Δρmin = −0.10 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022776/rk2151sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022776/rk2151Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany for the resumption of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the effect of ring and side chain substitutions on the crystal structures of aromatic amides (Gowda et al., 2000; 2007; 2009), the structure of N–(phenyl)–formamide (I) has been determined. The asymmetric unit contains two independent molecules (Fig. 1). The conformation of the N—H bond is syn to the C═O bond in the side chain, in one of the molecules and is anti in the other, in contrast to the anti conformation observed in N–(2,6–dichlorophenyl)–formamide (Gowda et al., 2000 and N–(phenyl)–acetamide (Brown et al., 1966). The molecules in (I) are linked through intermolecular N—H···O hydrogen bonding (Tab. 1) and the chains formed diagonally as viewed in the ac plane (Fig. 2).

Experimental

The purity of the commmercial sample (Aldrich Chemicals) was checked by determining its melting point and characterized by recording its infrared and NMR spectra (Gowda et al., 2006). The single crystals used in X–ray diffraction studies were grown in ethanol solution by slow evaporation at room temperature.

Refinement

The H atoms were located in difference map and their positional parameters were refined with C—H = 0.9300 Å with Uiso(H) = 1.2Ueq(C). The N–bonded H atoms refined freely.

Figures

Fig. 1.
Molecular structure of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as a small spheres of arbitrary radii.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C7H7NOF(000) = 1024
Mr = 121.14Dx = 1.238 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2475 reflections
a = 30.923 (3) Åθ = 2.7–28.2°
b = 6.1737 (6) ŵ = 0.08 mm1
c = 14.814 (1) ÅT = 298 K
β = 113.14 (1)°Needle, colourless
V = 2600.6 (4) Å30.48 × 0.44 × 0.40 mm
Z = 16

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2383 independent reflections
Radiation source: Fine–focus sealed tube1679 reflections with I > 2σ(I)
GraphiteRint = 0.016
ω and [var phi] scansθmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −37→36
Tmin = 0.966, Tmax = 0.969k = −7→7
8394 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115w = 1/[σ2(Fo2) + (0.0651P)2] where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2383 reflectionsΔρmax = 0.11 e Å3
170 parametersΔρmin = −0.10 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (7)

Special details

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009); empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.09999 (4)0.21410 (18)0.62537 (8)0.0921 (4)
N10.04841 (4)0.34831 (19)0.47961 (9)0.0694 (4)
H1N0.0202 (6)0.322 (2)0.4332 (11)0.083*
C10.07229 (4)0.5289 (2)0.46365 (9)0.0561 (3)
C20.04734 (5)0.6657 (3)0.38753 (10)0.0727 (4)
H20.01590.63670.34910.087*
C30.06857 (6)0.8441 (3)0.36825 (12)0.0893 (5)
H30.05150.93510.31640.107*
C40.11462 (6)0.8895 (3)0.42461 (12)0.0890 (5)
H40.12891.01190.41190.107*
C50.13948 (6)0.7535 (3)0.49972 (12)0.0828 (5)
H50.17090.78340.53780.099*
C60.11890 (5)0.5734 (2)0.51989 (11)0.0687 (4)
H60.13630.48180.57120.082*
C70.06296 (6)0.2094 (2)0.55435 (12)0.0792 (5)
H70.04260.09660.55180.095*
O20.04140 (4)0.2563 (2)0.16582 (9)0.0996 (4)
N20.11861 (4)0.1904 (2)0.22825 (8)0.0628 (3)
H2N0.1131 (5)0.067 (3)0.1994 (10)0.075*
C80.16640 (5)0.2389 (2)0.28235 (9)0.0565 (3)
C90.18179 (6)0.4299 (3)0.33258 (13)0.0862 (5)
H90.16030.53690.33090.103*
C100.22921 (7)0.4618 (3)0.38543 (14)0.1024 (6)
H100.23940.59010.42020.123*
C110.26131 (6)0.3093 (3)0.38760 (14)0.0963 (6)
H110.29320.33240.42350.116*
C120.24605 (6)0.1230 (3)0.33668 (13)0.0919 (5)
H120.26780.01840.33710.110*
C130.19895 (5)0.0867 (2)0.28451 (11)0.0750 (4)
H130.1891−0.04250.25030.090*
C140.08175 (6)0.3109 (3)0.21441 (12)0.0771 (4)
H140.08670.44710.24360.093*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0813 (8)0.0791 (7)0.0881 (8)−0.0120 (6)0.0032 (6)0.0215 (5)
N10.0527 (7)0.0658 (8)0.0743 (8)−0.0096 (6)0.0082 (6)0.0067 (6)
C10.0522 (8)0.0564 (8)0.0570 (7)−0.0001 (6)0.0186 (6)−0.0032 (6)
C20.0644 (9)0.0780 (10)0.0644 (9)−0.0023 (7)0.0131 (7)0.0049 (7)
C30.1006 (14)0.0823 (11)0.0750 (10)−0.0058 (10)0.0236 (9)0.0207 (9)
C40.0993 (14)0.0849 (12)0.0826 (11)−0.0263 (10)0.0355 (10)0.0063 (9)
C50.0682 (10)0.0902 (12)0.0847 (11)−0.0210 (9)0.0242 (8)0.0026 (9)
C60.0555 (8)0.0699 (9)0.0742 (9)−0.0033 (7)0.0184 (7)0.0063 (7)
C70.0714 (10)0.0648 (9)0.0897 (11)−0.0116 (8)0.0189 (9)0.0098 (8)
O20.0556 (7)0.1164 (10)0.1092 (9)0.0152 (6)0.0132 (6)0.0123 (7)
N20.0567 (7)0.0615 (7)0.0645 (7)0.0048 (6)0.0175 (6)−0.0040 (5)
C80.0557 (8)0.0602 (8)0.0522 (7)−0.0013 (6)0.0197 (6)0.0026 (6)
C90.0790 (12)0.0746 (10)0.1005 (12)−0.0037 (8)0.0303 (9)−0.0202 (9)
C100.0939 (14)0.0939 (13)0.1047 (13)−0.0311 (11)0.0233 (11)−0.0271 (10)
C110.0647 (11)0.1055 (15)0.0999 (13)−0.0158 (11)0.0122 (9)0.0068 (11)
C120.0601 (10)0.0924 (12)0.1119 (13)0.0070 (9)0.0218 (9)0.0067 (10)
C130.0618 (9)0.0680 (9)0.0873 (10)0.0029 (7)0.0209 (8)−0.0064 (7)
C140.0667 (11)0.0739 (10)0.0865 (11)0.0132 (8)0.0256 (9)0.0104 (8)

Geometric parameters (Å, °)

O1—C71.2132 (17)O2—C141.2178 (18)
N1—C71.3314 (19)N2—C141.3082 (19)
N1—C11.4076 (17)N2—C81.4089 (17)
N1—H1N0.888 (16)N2—H2N0.857 (16)
C1—C21.3771 (19)C8—C131.3684 (19)
C1—C61.3797 (18)C8—C91.375 (2)
C2—C31.369 (2)C9—C101.378 (2)
C2—H20.9300C9—H90.9300
C3—C41.367 (2)C10—C111.359 (3)
C3—H30.9300C10—H100.9300
C4—C51.365 (2)C11—C121.354 (3)
C4—H40.9300C11—H110.9300
C5—C61.371 (2)C12—C131.373 (2)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—H130.9300
C7—H70.9300C14—H140.9300
C7—N1—C1128.45 (13)C14—N2—C8128.51 (14)
C7—N1—H1N115.8 (10)C14—N2—H2N115.9 (10)
C1—N1—H1N115.7 (10)C8—N2—H2N115.6 (10)
C2—C1—C6119.24 (13)C13—C8—C9118.76 (14)
C2—C1—N1117.46 (12)C13—C8—N2117.69 (12)
C6—C1—N1123.29 (12)C9—C8—N2123.55 (13)
C3—C2—C1120.27 (14)C8—C9—C10119.64 (16)
C3—C2—H2119.9C8—C9—H9120.2
C1—C2—H2119.9C10—C9—H9120.2
C4—C3—C2120.51 (15)C11—C10—C9121.22 (17)
C4—C3—H3119.7C11—C10—H10119.4
C2—C3—H3119.7C9—C10—H10119.4
C5—C4—C3119.30 (15)C12—C11—C10118.93 (17)
C5—C4—H4120.4C12—C11—H11120.5
C3—C4—H4120.4C10—C11—H11120.5
C4—C5—C6121.06 (15)C11—C12—C13120.85 (17)
C4—C5—H5119.5C11—C12—H12119.6
C6—C5—H5119.5C13—C12—H12119.6
C5—C6—C1119.62 (14)C8—C13—C12120.59 (15)
C5—C6—H6120.2C8—C13—H13119.7
C1—C6—H6120.2C12—C13—H13119.7
O1—C7—N1126.94 (14)O2—C14—N2124.22 (16)
O1—C7—H7116.5O2—C14—H14117.9
N1—C7—H7116.5N2—C14—H14117.9
C7—N1—C1—C2−171.26 (15)C14—N2—C8—C13−178.73 (14)
C7—N1—C1—C69.0 (2)C14—N2—C8—C91.3 (2)
C6—C1—C2—C3−0.2 (2)C13—C8—C9—C10−1.4 (2)
N1—C1—C2—C3180.00 (14)N2—C8—C9—C10178.58 (15)
C1—C2—C3—C4−0.5 (3)C8—C9—C10—C111.1 (3)
C2—C3—C4—C50.8 (3)C9—C10—C11—C120.0 (3)
C3—C4—C5—C6−0.5 (3)C10—C11—C12—C13−0.8 (3)
C4—C5—C6—C1−0.2 (2)C9—C8—C13—C120.7 (2)
C2—C1—C6—C50.5 (2)N2—C8—C13—C12−179.34 (13)
N1—C1—C6—C5−179.70 (14)C11—C12—C13—C80.4 (3)
C1—N1—C7—O11.5 (3)C8—N2—C14—O2179.62 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.888 (16)1.936 (16)2.8239 (17)178.1 (14)
N2—H2N···O1ii0.857 (16)2.007 (16)2.8637 (17)177.0 (14)

Symmetry codes: (i) −x, y, −z+1/2; (ii) x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2151).

References

  • Brown, C. J. (1966). Acta Cryst.21, 442–445.
  • Gowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1039. [PMC free article] [PubMed]
  • Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.
  • Gowda, B. T., Paulus, H., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331–337.
  • Gowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595–599.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography