PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1573–o1574.
Published online 2009 June 13. doi:  10.1107/S1600536809021151
PMCID: PMC2969495

1,4-Bis(iodo­meth­yl)benzene

Abstract

The centrosymmetric title compound, C8H8I2, was prepared by metathesis from the dibromo analogue. In the crystal structure, weak C—H(...)I inter­actions link the mol­ecules into stacks down the b axis. The structure is further stabilized by short I(...)I contacts [3.8433 (2) Å], forming undulating sheets in the (101) plane.

Related literature

For the synthesis, see: Moore & Stupp (1986 [triangle]); Kida et al. (2005 [triangle]). For related structures, see: Basaran et al. (1992 [triangle]); Fun et al. (2009 [triangle]); Jones & Kus (2007 [triangle]); Zhang et al. (2007 [triangle]). For applications of dihalo-p-xylenes in living radical polymerization processes, see: Samakande et al., (2007 [triangle]); Asandei et al. (2008 [triangle]). For other polymer applications, see: Leir & Stark (1989 [triangle]); Hochberg & Schulz (1993 [triangle]). For additional applications of dihalo-p-xylenes, see: Le Baccon et al. (2001 [triangle]); Sobransingh & Kaifer (2006 [triangle]); Song et al. (2008 [triangle]); Au et al. (2009 [triangle]). For details of halogen(...)halogen inter­actions, see: Pedireddi et al. (1994 [triangle]) and for reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1573-scheme1.jpg

Experimental

Crystal data

  • C8H8I2
  • M r = 357.94
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1573-efi1.jpg
  • a = 9.0978 (3) Å
  • b = 4.5982 (2) Å
  • c = 11.2793 (3) Å
  • β = 99.808 (1)°
  • V = 464.96 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.69 mm−1
  • T = 89 K
  • 0.21 × 0.15 × 0.03 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.410, T max = 0.818
  • 8198 measured reflections
  • 1674 independent reflections
  • 1538 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.013
  • wR(F 2) = 0.033
  • S = 1.06
  • 1674 reflections
  • 62 parameters
  • All H-atom parameters refined
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker 2006 [triangle]); cell refinement: APEX2 and SAINT (Bruker 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and TITAN (Hunter & Simpson, 1999 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 [triangle]), PLATON (Spek, 2009 [triangle]) and publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021151/hb2998sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021151/hb2998Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.

supplementary crystallographic information

Comment

Dihalo-p-xylenes are extensively used in polymer science (Leir & Stark, 1989; Hochberg & Schulz, 1993; Samakande et al., 2007) and as a versatile synthon for –CH2—C6H4—CH2– connective units in other areas of chemistry (Le Baccon et al., 2001; Song et al., 2008; Au et al., 2009). The bulk of this work utilizes the commercially available α,α'-dibromo-p-xylene, but the diiodo- derivative offers additional reactivity (Moore & Stupp, 1986; Sobransingh & Kaifer, 2006; Asandei et al., 2008). Our interest in the title compound, (I), Fig. 1, is as one of the components in xylene bridged electroactive gels. In these, the chemical links are quaternary amines formed by reaction of the alkylhalogen termini with amine residues in the other gel component.

The molecule lies about an inversion centre located at the centroid of the benzene ring. The C1···C4 atoms lie in a plane (r.m.s. deviation 0.01 Å) and the C—C and C—I distances in the molecule are unremarkable (Allen et al., 1987). This structure is the fourth in a series of XCH2C6H4CH2X molecules; X = F, II (Fun et al., 2009); Cl, III (Basaran et al., (1992); Br, IV (Jones & Kus, 2007; Zhang et al., 2007). All four molecules are closely isostructural with only the C—halogen bond distance distinguishing them. Indeed the CH2C6H4CH2 fragment of the title compound overlays with corresponding portions of the related molecules with r.m.s. deviations, 0.032 Å for II, 0.013 Å for III and 0.007 Å for IV respectively (Macrae et al., 2006).

In the crystal structure, weak C—H···I interactions and short I···I contacts, 3.8433 (2) Å, form undulating sheets in the 101 plane, Fig. 2. Each I atom interacts with two adjacent iodine atoms (symmetry operations 2 - x, -1/2 + y, 1/2 - z and 2 - x, 1/2 + y, 1/2 - z). The I···I contacts observed here fit with the type II designation of halogen···halogen interactions proposed previously (Pedireddi et al. 1994). The packing arrangement for I is closely similar to that observed for IV, (Jones & Kus, 2007; Zhang et al., 2007). I, III and IV all crystallize in the space group P21/c with unit cells that differ only in a small but significant increase in volume as the size of the halogen increases.

Experimental

The title compound was prepared by a combination of the methods of Moore & Stupp (1986) and Kida et al. (2005). Thus α,α'-dibromo-p-xylene (1.32 g, 5 mmol) was refluxed for 7 h with sodium iodide (2.25 g, 15 mmol) in acetone (25 ml). The solution was allowed to cool overnight, and the resulting yellow plates of (I) that developed were rinsed gently with water to remove sodium bromide and air dried. Confirmation of the metathesized (iodo) product was by microanalysis, mass spectroscopy and diagnostic tests. 1H and 13C NMR spectra are distinct from those of the dibromo precursor.

Refinement

All H-atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.
The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. Unlabelled atoms are generated by the symmetry operation (1–x, –y, 1–z).
Fig. 2.
Crystal packing for (I) viewed down the b axis with hydrogen bonds and short I···I contacts drawn as dashed lines.

Crystal data

C8H8I2F(000) = 324
Mr = 357.94Dx = 2.557 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5590 reflections
a = 9.0978 (3) Åθ = 2.3–33.0°
b = 4.5982 (2) ŵ = 6.69 mm1
c = 11.2793 (3) ÅT = 89 K
β = 99.808 (1)°Rectangular plate, pale yellow
V = 464.96 (3) Å30.21 × 0.15 × 0.03 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer1674 independent reflections
Radiation source: fine-focus sealed tube1538 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 33.4°, θmin = 3.7°
Absorption correction: multi-scan (SADABS; Bruker, 2006)h = −13→13
Tmin = 0.410, Tmax = 0.818k = −5→7
8198 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.013Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.033All H-atom parameters refined
S = 1.06w = 1/[σ2(Fo2) + (0.0145P)2 + 0.1407P] where P = (Fo2 + 2Fc2)/3
1674 reflections(Δ/σ)max = 0.001
62 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.62504 (16)0.1521 (3)0.47504 (13)0.0138 (2)
C20.63784 (17)−0.0405 (3)0.57245 (14)0.0154 (3)
C30.51429 (17)−0.1903 (3)0.59710 (14)0.0154 (3)
C40.75717 (18)0.3189 (4)0.45106 (15)0.0190 (3)
I10.880515 (9)0.07951 (2)0.331669 (8)0.01438 (4)
H20.729 (3)−0.073 (4)0.620 (2)0.021 (6)*
H410.841 (3)0.354 (5)0.524 (2)0.031 (6)*
H30.523 (2)−0.330 (5)0.6678 (19)0.022 (5)*
H420.733 (3)0.509 (5)0.405 (2)0.021 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0142 (6)0.0109 (6)0.0180 (6)−0.0017 (5)0.0078 (5)−0.0032 (5)
C20.0133 (6)0.0159 (7)0.0174 (7)0.0007 (5)0.0038 (5)−0.0010 (5)
C30.0175 (6)0.0126 (6)0.0175 (6)0.0006 (5)0.0070 (5)0.0012 (5)
C40.0191 (7)0.0150 (7)0.0258 (8)−0.0039 (5)0.0124 (6)−0.0051 (6)
I10.01367 (5)0.01628 (6)0.01473 (5)−0.00037 (3)0.00680 (3)0.00092 (3)

Geometric parameters (Å, °)

C1—C3i1.396 (2)C3—C1i1.396 (2)
C1—C21.401 (2)C3—H31.01 (2)
C1—C41.489 (2)C4—I12.1907 (15)
C2—C31.386 (2)C4—H411.04 (2)
C2—H20.92 (2)C4—H421.02 (2)
C3i—C1—C2118.88 (13)C1i—C3—H3118.7 (12)
C3i—C1—C4120.68 (14)C1—C4—I1111.52 (10)
C2—C1—C4120.42 (14)C1—C4—H41116.4 (13)
C3—C2—C1120.64 (14)I1—C4—H41100.5 (13)
C3—C2—H2119.1 (14)C1—C4—H42114.9 (13)
C1—C2—H2120.3 (14)I1—C4—H42101.8 (13)
C2—C3—C1i120.48 (14)H41—C4—H42109.8 (19)
C2—C3—H3120.9 (12)
C3i—C1—C2—C3−0.1 (2)C3i—C1—C4—I1−91.95 (15)
C4—C1—C2—C3178.24 (14)C2—C1—C4—I189.71 (15)
C1—C2—C3—C1i0.1 (2)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H42···I1ii1.02 (2)3.12 (2)3.9774 (16)141.8 (16)

Symmetry codes: (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2998).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Asandei, A. D., Chen, Y., Simpson, C., Gilbert, M. & Moran, I. W. (2008). Polymer Preprints (Am. Chem. Soc. Div. Polym. Chem.), 49, 489–490.
  • Au, R. H. W., Fraser, C. S. A., Eisler, D. J., Jennings, M. C. & Puddephat, R. J. (2009). Organometallics, 28, 1719–1729.
  • Basaran, R., Dou, S.-Q. & Weiss, A. (1992). Ber. Bunsenges. Phys. Chem.96, 1688–1690.
  • Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fun, H.-K., Kia, R., Patil, P. S. & Dharmaprakash, S. M. (2009). Acta Cryst. E65, o459. [PMC free article] [PubMed]
  • Hochberg, G. C. & Schulz, R. C. (1993). Polym. Int.32, 309–317.
  • Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  • Jones, P. G. & Kus, P. (2007). Z. Naturforsch. Teil B, 62, 725–731.
  • Kida, T., Kikuzawa, A., Higashimoto, H., Nakatsuji, Y. & Akashi, M. (2005). Tetrahedron, 61, 5763–5768.
  • Le Baccon, M., Chuburu, F., Toupet, L., Handel, H., Soibinet, M., Dechamps-Olivier, I., Barbier, J.-P. & Aplincourt, M. (2001). New J. Chem.25, 1168–1174.
  • Leir, C. M. & Stark, J. E. (1989). J. Appl. Polym. Sci.38, 1535–1547.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Moore, J. S. & Stupp, S. I. (1986). Macromolecules, 19, 1815–1824.
  • Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.
  • Samakande, A., Sanderson, R. D. & Hartmann, P. C. (2007). Synth. Commun.37, 3861–3872.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sobransingh, D. & Kaifer, A. E. (2006). Org. Lett.8, 3247–3250. [PubMed]
  • Song, Z., Weng, X., Weng, L., Huang, J., Wang, X., Bai, M., Zhou, Y., Yang, G. & Zhou, X. (2008). Chem. Eur. J.14, 5751–5754. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.
  • Zhang, M., Su, P., Meng, X.-G. & Xu, X.-M. (2007). Acta Cryst. E63, o951–o952.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography