PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1559.
Published online 2009 June 13. doi:  10.1107/S1600536809021291
PMCID: PMC2969492

3,3,12,12-Tetra­methyl-1,5,10,14-tetra­oxa­dispiro­[5.2.5.2]hexa­deca­ne

Abstract

The mol­ecule of the title compound, C16H28O4, is centrosymmetric. The cyclo­hexane ring and both six-membered dioxane rings adopt chair conformations. In the crystal, the mol­ecules lie in layers in the (100) planes and the shortest inter­molecular contacts are H(...)H (2.30 Å).

Related literature

The title compound is an inter­mediate in the synthesis of Frovatriptan, a 5-HT1-like agonist, see: Borrett et al. (1999 [triangle]). For details of the synthesis, see: Babler & Spina (1984 [triangle]); Borrett et al. (1999 [triangle]). For a related structure, see: Luger et al. (1972 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1559-scheme1.jpg

Experimental

Crystal data

  • C16H28O4
  • M r = 284.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1559-efi1.jpg
  • a = 12.639 (8) Å
  • b = 5.838 (4) Å
  • c = 11.179 (7) Å
  • β = 110.611 (8)°
  • V = 772.1 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 93 K
  • 0.43 × 0.37 × 0.14 mm

Data collection

  • Rigaku SPIDER diffractometer
  • Absorption correction: none
  • 5721 measured reflections
  • 1752 independent reflections
  • 1243 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.095
  • S = 1.00
  • 1752 reflections
  • 93 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: RAPID-AUTO (Rigaku 2004 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021291/bi2376sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021291/bi2376Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

supplementary crystallographic information

Comment

The title compound is useful as an intermediate in the synthesis of Frovatriptan, a 5-HT1-like agonist (Babler & Spina, 1984; Borrett et al., 1999). The molecular structure is shown in Fig. 1. Three six-membered rings exhibit chair conformations, with C—C bond lengths in the range 1.516 (2)–1.527 (2) Å and C—C—C angles in the range 106.59 (13)–112.55 (13)°; these agree well with the values in other cyclohexane derivatives described in the literature (Luger et al., 1972).

Experimental

The title compound was obtained by reaction of 1,4-cyclohexanedione (20 mmol), 2,2-dimethyl-1,3-propanediol (40 mmol) and sulfuric acid (0.1 mmol) in hexane (20 ml). The mixture was stirred for 6 h at 333 K. Colourless block-shaped crystals suitable for X-ray diffraction analysis were grown at the bottom of the vessel after 7 days slow evaporation of the solution at room temperature.

Refinement

H atoms were placed in calculated positions with C—H = 0.99 and 0.98 Å for methylene and methyl H atoms, respectively, and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure with displacement ellipsoids drawn at the 30% probability level for non-H atoms. Non-labelled atoms are related to labelled atoms by the symmetry operator: 1 - x, 1 - y, 1 - z.

Crystal data

C16H28O4F(000) = 312
Mr = 284.38Dx = 1.223 Mg m3
Monoclinic, P21/cMelting point: 430 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.639 (8) ÅCell parameters from 2071 reflections
b = 5.838 (4) Åθ = 3.3–27.5°
c = 11.179 (7) ŵ = 0.09 mm1
β = 110.611 (8)°T = 93 K
V = 772.1 (9) Å3Block, colourless
Z = 20.43 × 0.37 × 0.14 mm

Data collection

Rigaku SPIDER diffractometer1243 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.048
graphiteθmax = 27.5°, θmin = 3.4°
ω scansh = −16→16
5721 measured reflectionsk = −7→7
1752 independent reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0116P)2 + 0.36P] where P = (Fo2 + 2Fc2)/3
1752 reflections(Δ/σ)max < 0.001
93 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.68024 (9)0.62454 (18)0.57453 (10)0.0219 (3)
O20.66546 (9)0.37232 (18)0.73088 (10)0.0221 (3)
C10.43232 (13)0.7060 (3)0.48564 (15)0.0224 (4)
H1A0.36490.78510.49120.027*
H1B0.47680.81940.45740.027*
C20.50381 (13)0.6171 (3)0.61780 (15)0.0220 (4)
H2A0.52990.74780.67740.026*
H2B0.45700.51660.65050.026*
C30.60572 (13)0.4836 (3)0.61294 (15)0.0204 (4)
C40.74097 (14)0.7887 (3)0.66956 (15)0.0232 (4)
H4A0.68680.89770.68430.028*
H4B0.79280.87680.63800.028*
C50.80864 (13)0.6730 (3)0.79466 (15)0.0217 (4)
C60.72591 (14)0.5256 (3)0.83191 (15)0.0222 (4)
H6A0.76770.43600.90930.027*
H6B0.67150.62570.85260.027*
C70.85930 (15)0.8559 (3)0.89653 (16)0.0284 (4)
H7A0.90830.95710.86910.034*
H7B0.90380.78200.97730.034*
H7C0.79830.94590.90850.034*
C80.90174 (14)0.5242 (3)0.77798 (16)0.0288 (4)
H8A0.86800.40970.71130.035*
H8B0.94300.44660.85870.035*
H8C0.95410.62060.75320.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0275 (6)0.0188 (6)0.0206 (6)−0.0030 (5)0.0099 (5)−0.0001 (5)
O20.0292 (6)0.0154 (6)0.0197 (6)−0.0016 (5)0.0060 (5)0.0013 (5)
C10.0282 (9)0.0151 (8)0.0240 (9)0.0018 (6)0.0093 (7)−0.0016 (7)
C20.0262 (9)0.0184 (8)0.0217 (9)0.0008 (6)0.0087 (7)−0.0019 (7)
C30.0254 (9)0.0167 (8)0.0188 (8)−0.0007 (6)0.0074 (7)0.0024 (7)
C40.0289 (9)0.0160 (8)0.0240 (9)−0.0042 (7)0.0083 (7)0.0000 (7)
C50.0258 (9)0.0182 (8)0.0209 (9)−0.0010 (7)0.0083 (7)0.0002 (7)
C60.0277 (9)0.0207 (8)0.0175 (9)0.0002 (7)0.0073 (7)0.0003 (7)
C70.0331 (10)0.0254 (9)0.0253 (10)−0.0041 (8)0.0084 (8)−0.0010 (8)
C80.0281 (9)0.0291 (10)0.0293 (10)0.0016 (7)0.0105 (8)0.0008 (8)

Geometric parameters (Å, °)

O1—C31.4258 (19)C4—H4A0.990
O1—C41.4362 (19)C4—H4B0.990
O2—C31.4248 (19)C5—C61.521 (2)
O2—C61.4328 (19)C5—C81.526 (2)
C1—C3i1.516 (2)C5—C71.527 (2)
C1—C21.526 (2)C6—H6A0.990
C1—H1A0.990C6—H6B0.990
C1—H1B0.990C7—H7A0.980
C2—C31.523 (2)C7—H7B0.980
C2—H2A0.990C7—H7C0.980
C2—H2B0.990C8—H8A0.980
C3—C1i1.516 (2)C8—H8B0.980
C4—C51.517 (2)C8—H8C0.980
C3—O1—C4113.58 (12)H4A—C4—H4B108.0
C3—O2—C6113.98 (12)C4—C5—C6106.59 (13)
C3i—C1—C2112.55 (13)C4—C5—C8110.46 (14)
C3i—C1—H1A109.1C6—C5—C8110.18 (14)
C2—C1—H1A109.1C4—C5—C7109.17 (14)
C3i—C1—H1B109.1C6—C5—C7109.84 (14)
C2—C1—H1B109.1C8—C5—C7110.50 (14)
H1A—C1—H1B107.8O2—C6—C5111.39 (13)
C3—C2—C1111.07 (13)O2—C6—H6A109.3
C3—C2—H2A109.4C5—C6—H6A109.3
C1—C2—H2A109.4O2—C6—H6B109.3
C3—C2—H2B109.4C5—C6—H6B109.3
C1—C2—H2B109.4H6A—C6—H6B108.0
H2A—C2—H2B108.0C5—C7—H7A109.5
O2—C3—O1110.54 (12)C5—C7—H7B109.5
O2—C3—C1i105.59 (13)H7A—C7—H7B109.5
O1—C3—C1i106.05 (13)C5—C7—H7C109.5
O2—C3—C2112.32 (13)H7A—C7—H7C109.5
O1—C3—C2111.86 (13)H7B—C7—H7C109.5
C1i—C3—C2110.12 (13)C5—C8—H8A109.5
O1—C4—C5111.45 (13)C5—C8—H8B109.5
O1—C4—H4A109.3H8A—C8—H8B109.5
C5—C4—H4A109.3C5—C8—H8C109.5
O1—C4—H4B109.3H8A—C8—H8C109.5
C5—C4—H4B109.3H8B—C8—H8C109.5
C3i—C1—C2—C356.01 (19)C1—C2—C3—C1i−54.63 (18)
C6—O2—C3—O154.99 (16)C3—O1—C4—C557.12 (17)
C6—O2—C3—C1i169.25 (12)O1—C4—C5—C6−54.38 (17)
C6—O2—C3—C2−70.72 (16)O1—C4—C5—C865.32 (17)
C4—O1—C3—O2−55.06 (16)O1—C4—C5—C7−172.97 (13)
C4—O1—C3—C1i−169.04 (12)C3—O2—C6—C5−56.61 (17)
C4—O1—C3—C270.90 (16)C4—C5—C6—O254.05 (17)
C1—C2—C3—O2−172.00 (12)C8—C5—C6—O2−65.83 (17)
C1—C2—C3—O163.02 (16)C7—C5—C6—O2172.21 (13)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2376).

References

  • Babler, J. H. & Spina, K. P. (1984). Synth. Commun.14, 39–44.
  • Borrett, G. T., Kitteringham, J., Porter, R. A., Shipton, M. R., Vimal, M. & Young, R. C. (1999). US Patent No. 5 962 501.
  • Luger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706–710.
  • Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography