PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1613–o1614.
Published online 2009 June 17. doi:  10.1107/S1600536809022478
PMCID: PMC2969490

2-Meth­oxy-6-(6-methyl-1H-benzimid­azol-2-yl)phenol

Abstract

In the title mol­ecule, C15H14N2O2, the substituted benzene ring forms a dihedral angle of 4.15 (1)° with the benzimidazole ring system. An intra­molecular O—H(...)N hydrogen bond generates an S(6) ring motif. In the solid state, mol­ecules are linked into chains along the [001] via inter­molecular bifurcated N—H(...)(O,O) hydrogen bonds, which generate R 1 2(5) ring motifs. The crystal packing is also consolidated by C—H(...)π inter­actions, and π–π stacking inter­actions between the imidazole and substituted benzene rings [centroid–centroid distance = 3.5746 (13) Å]. The methyl group attached to the benzimidazole ring system is disordered over two positions with occupancies of 0.587 (6) and 0.413 (6), suggesting 180° rotational disorder for the benzimidazole group.

Related literature

For the biological activity of benzimidazole derivatives, see: Minoura et al. (2004 [triangle]); Pawar et al. (2004 [triangle]); Tomei et al. (2003 [triangle]); Rao et al. (2003 [triangle]); Demirayak et al. (2002 [triangle]). For related structures, see: Eltayeb et al. (2007a [triangle],b [triangle],c [triangle]); Yeap et al. (2009 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1613-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O2
  • M r = 254.28
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-65-o1613-efi1.jpg
  • a = 14.4118 (2) Å
  • c = 12.0995 (2) Å
  • V = 2513.07 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 K
  • 0.35 × 0.27 × 0.24 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.969, T max = 0.978
  • 28200 measured reflections
  • 2215 independent reflections
  • 1725 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.156
  • S = 1.08
  • 2215 reflections
  • 193 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022478/ci2825sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022478/ci2825Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia (USM) for the E-Science Fund and RU research grants (Nos. PKIMIA/613308, PKIMIA/815002, and PKIMIA/811120). HKF and CKQ thank USM for a Research University Golden Goose grant (No. 1001/PFIZIK/811012). CKQ thanks USM for a research fellowship. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE.

supplementary crystallographic information

Comment

The synthesis of benzimidazoles has received much attention owing to the varied biological activity such as antidiabetic (Minoura et al., 2004), antimicrobial, antifungal (Pawar et al., 2004), antiviral (Tomei et al., 2003), antiHIV (Rao et al., 2003), and anticancer (Demirayak et al., 2002) properties exhibited by a number of derivatives of these compounds. Previously we reported crystal structures of 4-allyl-2-[1-(5-allyl-2-hydroxy-3-methoxybenzyl)-1H-benzimidazol-2-yl]-6- methoxyphenol (Eltayeb et al., 2007a), 2-(2-methoxynaphthalen-1-yl)-1- [(2-methoxynaphthalen-1-yl)methyl]-1H-benzimidazole (Eltayeb et al., 2007b) and 2-(benzimidazol-2-yl)-6-methoxyphenol (Eltayeb et al., 2007c). Owing to the biological importance of the attached benzimidazole ring system, we report here the single-crystal X-ray diffraction study of 2-methoxy-6-(6-methyl-1H-benzimidazol-2-yl)phenol.

The bond lengths (Allen et al., 1987) and angles in the title molecule (Fig. 1) are normal and are comparable to those observed in a closely related structure (Yeap et al., 2009). The dihedral angle between the C8-C13 and N1/N2/C1-C7 rings is 4.15 (1)°. The molecular structure is stabilized by an intramolecular O1—H1O···N2 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995).

In the solid state, the molecules are linked via intermolecular N1—H1N···O1 and N1—H1N···O2 bifurcated donor bonds into chains along the [001] (Fig. 2). These hydrogen bonds form an R12(5) ring motif. The crystal packing is consolidated by C—H···π (Table 1) interactions involving the C8-C13 benzene ring, and π–π stacking interactions between the C8—C13 (centroid Cg1) ring at (3/2-x, 1/2-y, z) and the N1/C1/C6/N2/C7 (centroid Cg2) ring at (x, y, z), with a Cg1···Cg2 distance of 3.5746 (13) Å.

Experimental

To a solution of 4-methyl-1,2-phenylenediamine (0.244 g, 2 mmol) in ethanol (30 ml) was added 3-methoxysalicylaldehyde (0.604 g, 4 mmol). The mixture was refluxed with stirring for half an hour. The resultant red solution was filtered. The red powder obtained was dissolved in dichloromethane. Crystals suitable for XRD were formed after several days of slow evaporation of solvent at room temperature.

Refinement

Atoms H1O and H1N were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The methyl group attached to the benzimidazole ring system is disordered over two positions with refined site-occupancies of 0.587 (6) and 0.413 (6). The Uij components of the atom C3 were approximated to isotropic behaviour.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular interactions are shown as dashed lines. Both disorder components are shown.
Fig. 2.
The crystal packing of the title compound, viewed along the [110]. Hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.

Crystal data

C15H14N2O2Dx = 1.344 Mg m3
Mr = 254.28Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 9054 reflections
Hall symbol: -P 4bcθ = 2.2–29.6°
a = 14.4118 (2) ŵ = 0.09 mm1
c = 12.0995 (2) ÅT = 100 K
V = 2513.07 (6) Å3Block, yellow
Z = 80.35 × 0.27 × 0.24 mm
F(000) = 1072

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2215 independent reflections
Radiation source: fine-focus sealed tube1725 reflections with I > 2σ(I)
graphiteRint = 0.033
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −17→16
Tmin = 0.969, Tmax = 0.978k = −17→17
28200 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0696P)2 + 1.1514P] where P = (Fo2 + 2Fc2)/3
2215 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.29 e Å3
6 restraintsΔρmin = −0.17 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.63382 (12)0.20396 (13)−0.12954 (12)0.0575 (5)
H1O0.632 (2)0.268 (2)−0.104 (3)0.094 (10)*
O20.63393 (12)0.02461 (12)−0.12218 (13)0.0641 (5)
N10.62805 (13)0.37806 (15)0.14723 (17)0.0556 (5)
H1N0.6438 (18)0.3647 (18)0.219 (3)0.077 (8)*
N20.62434 (13)0.36357 (13)−0.03521 (15)0.0506 (5)
C10.62626 (15)0.46707 (17)0.1047 (2)0.0579 (6)
C20.62707 (18)0.5541 (2)0.1545 (3)0.0726 (8)
H20.62990.56080.23090.087*
C30.62340 (18)0.63115 (19)0.0839 (3)0.0753 (8)
H30.62350.69060.11390.090*0.413 (6)
C40.6197 (2)0.6204 (2)−0.0292 (3)0.0787 (9)
H40.61680.6729−0.07380.094*0.587 (6)
C50.62015 (19)0.53499 (19)−0.0773 (3)0.0730 (8)
H50.61820.5289−0.15380.088*
C60.62354 (15)0.45686 (17)−0.0092 (2)0.0540 (6)
C70.62715 (14)0.31865 (16)0.06068 (17)0.0469 (6)
C80.62766 (14)0.21826 (16)0.06973 (17)0.0456 (5)
C90.63060 (14)0.16508 (16)−0.02796 (16)0.0456 (5)
C100.63048 (15)0.06902 (17)−0.02064 (18)0.0511 (6)
C110.62696 (16)0.02486 (17)0.0801 (2)0.0559 (6)
H110.6263−0.03960.08380.067*
C120.62437 (16)0.07732 (17)0.17613 (19)0.0572 (6)
H120.62270.04780.24440.069*
C130.62424 (15)0.17223 (16)0.17120 (18)0.0513 (6)
H130.62180.20650.23630.062*
C140.6320 (2)−0.07360 (18)−0.1201 (2)0.0739 (8)
H14A0.6353−0.0970−0.19420.111*
H14B0.5754−0.0942−0.08620.111*
H14C0.6840−0.0962−0.07840.111*
C150.6189 (3)0.7303 (3)0.1250 (4)0.0672 (15)0.587 (6)
H15A0.66640.76640.08960.101*0.587 (6)
H15B0.62820.73140.20350.101*0.587 (6)
H15C0.55920.75610.10780.101*0.587 (6)
C15A0.6243 (6)0.7101 (5)−0.0739 (9)0.106 (3)0.413 (6)
H15D0.57630.7175−0.12820.160*0.413 (6)
H15E0.68370.7191−0.10800.160*0.413 (6)
H15F0.61590.7549−0.01610.160*0.413 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0754 (11)0.0642 (11)0.0329 (9)0.0026 (8)0.0016 (7)0.0016 (7)
O20.0800 (12)0.0649 (11)0.0474 (10)0.0083 (9)−0.0050 (8)−0.0113 (8)
N10.0574 (12)0.0687 (14)0.0407 (11)0.0040 (10)−0.0037 (9)−0.0075 (10)
N20.0537 (12)0.0567 (12)0.0415 (11)0.0009 (9)0.0024 (8)0.0063 (9)
C10.0444 (13)0.0568 (15)0.0725 (17)0.0022 (10)0.0038 (11)−0.0055 (12)
C20.0608 (16)0.079 (2)0.0781 (18)0.0009 (13)0.0067 (14)−0.0209 (16)
C30.0564 (15)0.0563 (16)0.113 (2)−0.0023 (12)0.0144 (15)−0.0108 (15)
C40.0736 (19)0.071 (2)0.092 (2)−0.0012 (14)0.0211 (16)0.0047 (16)
C50.0750 (18)0.0601 (17)0.0837 (19)0.0024 (13)0.0163 (15)0.0105 (15)
C60.0490 (13)0.0562 (15)0.0568 (15)−0.0009 (10)0.0053 (11)0.0012 (11)
C70.0393 (12)0.0602 (14)0.0413 (13)−0.0005 (10)−0.0004 (9)−0.0022 (10)
C80.0388 (11)0.0593 (14)0.0387 (12)0.0020 (9)−0.0018 (9)0.0024 (10)
C90.0405 (12)0.0641 (15)0.0323 (11)0.0027 (10)0.0007 (9)0.0040 (10)
C100.0476 (13)0.0619 (15)0.0438 (13)0.0049 (10)−0.0056 (10)−0.0051 (10)
C110.0579 (14)0.0548 (14)0.0549 (15)0.0010 (11)−0.0065 (11)0.0047 (11)
C120.0632 (15)0.0655 (16)0.0429 (13)0.0008 (12)−0.0042 (11)0.0075 (11)
C130.0563 (14)0.0637 (15)0.0338 (12)0.0018 (11)−0.0030 (10)0.0008 (10)
C140.085 (2)0.0676 (18)0.0689 (18)0.0108 (14)−0.0186 (15)−0.0187 (14)
C150.066 (3)0.061 (3)0.074 (3)0.001 (2)0.005 (2)−0.009 (2)
C15A0.102 (6)0.056 (5)0.162 (9)0.003 (4)0.001 (6)0.031 (5)

Geometric parameters (Å, °)

O1—C91.352 (2)C5—H50.93
O1—H1O0.97 (3)C7—C81.451 (3)
O2—C101.386 (3)C8—C131.396 (3)
O2—C141.416 (3)C8—C91.409 (3)
N1—C71.353 (3)C9—C101.387 (3)
N1—C11.382 (3)C10—C111.376 (3)
N1—H1N0.92 (3)C11—C121.387 (3)
N2—C71.329 (3)C11—H110.93
N2—C61.381 (3)C12—C131.369 (3)
C1—C61.387 (4)C12—H120.93
C1—C21.392 (4)C13—H130.93
C2—C31.402 (4)C14—H14A0.96
C2—H20.93C14—H14B0.96
C3—C41.378 (5)C14—H14C0.96
C3—C151.515 (5)C15—H15A0.96
C3—H30.93C15—H15B0.96
C4—C51.362 (4)C15—H15C0.96
C4—C15A1.403 (8)C15A—H15D0.96
C4—H40.93C15A—H15E0.96
C5—C61.396 (4)C15A—H15F0.96
C9—O1—H1O95.9 (19)C13—C8—C7122.7 (2)
C10—O2—C14116.42 (19)C9—C8—C7118.62 (19)
C7—N1—C1107.4 (2)O1—C9—C10118.15 (19)
C7—N1—H1N127.0 (17)O1—C9—C8122.6 (2)
C1—N1—H1N123.5 (16)C10—C9—C8119.28 (19)
C7—N2—C6106.02 (19)C11—C10—O2125.0 (2)
N1—C1—C6105.8 (2)C11—C10—C9121.2 (2)
N1—C1—C2132.5 (3)O2—C10—C9113.8 (2)
C6—C1—C2121.8 (3)C10—C11—C12119.4 (2)
C1—C2—C3116.7 (3)C10—C11—H11120.3
C1—C2—H2121.6C12—C11—H11120.3
C3—C2—H2121.6C13—C12—C11120.5 (2)
C4—C3—C2121.2 (3)C13—C12—H12119.7
C4—C3—C15115.5 (3)C11—C12—H12119.7
C2—C3—C15123.3 (3)C12—C13—C8120.8 (2)
C4—C3—H3119.4C12—C13—H13119.6
C2—C3—H3119.4C8—C13—H13119.6
C5—C4—C3121.7 (3)O2—C14—H14A109.5
C5—C4—C15A131.9 (5)O2—C14—H14B109.5
C3—C4—C15A106.1 (5)H14A—C14—H14B109.5
C5—C4—H4119.1O2—C14—H14C109.5
C3—C4—H4119.1H14A—C14—H14C109.5
C4—C5—C6118.5 (3)H14B—C14—H14C109.5
C4—C5—H5120.8C3—C15—H15A109.5
C6—C5—H5120.8C3—C15—H15B109.5
N2—C6—C1109.2 (2)C3—C15—H15C109.5
N2—C6—C5130.7 (2)C4—C15A—H15D109.5
C1—C6—C5120.1 (2)C4—C15A—H15E109.5
N2—C7—N1111.6 (2)H15D—C15A—H15E109.5
N2—C7—C8123.48 (19)C4—C15A—H15F109.5
N1—C7—C8124.9 (2)H15D—C15A—H15F109.5
C13—C8—C9118.7 (2)H15E—C15A—H15F109.5
C7—N1—C1—C60.5 (2)C1—N1—C7—N2−0.4 (2)
C7—N1—C1—C2−179.3 (2)C1—N1—C7—C8−179.45 (19)
N1—C1—C2—C3−179.2 (2)N2—C7—C8—C13−175.5 (2)
C6—C1—C2—C31.1 (4)N1—C7—C8—C133.5 (3)
C1—C2—C3—C4−0.4 (4)N2—C7—C8—C93.7 (3)
C1—C2—C3—C15176.8 (3)N1—C7—C8—C9−177.3 (2)
C2—C3—C4—C5−0.5 (4)C13—C8—C9—O1179.87 (19)
C15—C3—C4—C5−177.9 (3)C7—C8—C9—O10.6 (3)
C2—C3—C4—C15A−175.4 (4)C13—C8—C9—C10−0.3 (3)
C15—C3—C4—C15A7.2 (5)C7—C8—C9—C10−179.56 (19)
C3—C4—C5—C60.6 (4)C14—O2—C10—C111.1 (3)
C15A—C4—C5—C6174.0 (5)C14—O2—C10—C9−178.7 (2)
C7—N2—C6—C10.2 (2)O1—C9—C10—C11−179.8 (2)
C7—N2—C6—C5−179.4 (2)C8—C9—C10—C110.4 (3)
N1—C1—C6—N2−0.4 (3)O1—C9—C10—O20.1 (3)
C2—C1—C6—N2179.4 (2)C8—C9—C10—O2−179.74 (18)
N1—C1—C6—C5179.3 (2)O2—C10—C11—C12179.6 (2)
C2—C1—C6—C5−0.9 (4)C9—C10—C11—C12−0.6 (3)
C4—C5—C6—N2179.7 (2)C10—C11—C12—C130.7 (3)
C4—C5—C6—C10.1 (4)C11—C12—C13—C8−0.7 (3)
C6—N2—C7—N10.1 (2)C9—C8—C13—C120.4 (3)
C6—N2—C7—C8179.20 (19)C7—C8—C13—C12179.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.92 (4)2.03 (3)2.919 (3)164 (2)
N1—H1N···O2i0.92 (4)2.58 (3)3.168 (3)123 (2)
O1—H1O···N20.97 (3)1.61 (3)2.572 (3)167 (3)
C14—H14B···Cg1ii0.962.953.840 (3)154

Symmetry codes: (i) y+1/2, −x+1, z+1/2; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2825).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Demirayak, S., Abu Mohsen, U. & lagri Karaburun, A. (2002). Eur. J. Med. Chem.37, 255–260. [PubMed]
  • Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007a). Acta Cryst. E63, o4141–o4142.
  • Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o465–o467.
  • Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007c). Acta Cryst. E63, o300–o302.
  • Minoura, H., Takeshita, S., Ita, M., Hirosumi, J., Mabuchi, M., Kawamura, I., Nakajima, S., Nakayama, O., Kayakiri, H., Oku, T., Ohkubo-Suzuki, A., Fukagawa, M., Kojo, H., Hanioka, K., Yamasaki, N., Imoto, T., Kobayashi, Y. & Mutoh, S. (2004). Eur. J. Pharmacol.494, 273–281. [PubMed]
  • Pawar, N. S., Dalal, D. S., Shimpi, S. R. & Mahulikar, P. P. (2004). Eur. J. Pharm. Sci.21, 115–118. [PubMed]
  • Rao, A., Chimirri, A., De Clercq, E., Maria Monforte, A., Monforte, P., Pannecouque, C. & Zappala, M. (2003). Farmaco, 58, 259–263.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tomei, L., Altamura, S., Bartholomew, L., Biroccio, A., Ceccacci, A., Pacini, L., Narjes, F., Gennari, N., Bisbocci, M., Incitti, I., Orsatti, L., Harper, S., Stansfield, I., Rowley, M., De Francesco, R. & Migliaccio, G. (2003). J. Virol.77, 13225–13231. [PMC free article] [PubMed]
  • Yeap, C. S., Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o745–o746. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography