PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1522.
Published online 2009 June 6. doi:  10.1107/S1600536809021187
PMCID: PMC2969485

4-Nitro­benzyl 2-bromo­acetate

Abstract

In the mol­ecule of the title compound, C9H8BrNO4, the acetate group is close to planar [maximum deviation = 0.042 (3) Å] and is oriented at a dihedral angle of 73.24 (3)° with respect to the aromatic ring. In the crystal structure, inter­molecular C—H(...)O inter­actions link the mol­ecules into a three-dimensional network, forming R 2 2(10) ring motifs.

Related literature

For a related structure, see: Pyun et al. (2001 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For ring motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1522-scheme1.jpg

Experimental

Crystal data

  • C9H8BrNO4
  • M r = 274.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1522-efi1.jpg
  • a = 13.851 (3) Å
  • b = 8.1590 (16) Å
  • c = 19.201 (4) Å
  • β = 109.08 (3)°
  • V = 2050.7 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 4.00 mm−1
  • T = 294 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.502, T max = 0.690
  • 3739 measured reflections
  • 1873 independent reflections
  • 1055 reflections with I > 2σ(I)
  • R int = 0.043
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.131
  • S = 1.00
  • 1873 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021187/hk2706sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021187/hk2706Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of p-nitrobenzyl alcohol are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. Atoms O1, O2, N, and C7 are 0.119 (3), -0.161 (3), -0.015 (3) and -0.042 (3) Å away from the plane of ring A, respectively. The moiety (O3/O4/C7-C9) is planar with a maximum deviation of -0.042 (3) Å for atom C7, and it is oriented with respect to ring A at a dihedral angle of 73.24 (3)°.

In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into a three-dimensional network forming R22(10) ring motifs (Bernstein et al., 1995) (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, bromoacetyl bromide (2.01 g) and p-nitrobenzyl alcohol (1.53 g) were added into dichloromethane (30 ml) in pyridine (15 ml) at 273-278 K. The gross products were extracted with n-hexane, washed with water, dried under vaccum, and then recrystallized from dichloromethane (yield; 0.503 g) (Pyun et al., 2001). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C9H8BrNO4F(000) = 1088
Mr = 274.07Dx = 1.775 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 13.851 (3) Åθ = 10–14°
b = 8.1590 (16) ŵ = 4.00 mm1
c = 19.201 (4) ÅT = 294 K
β = 109.08 (3)°Block, colorless
V = 2050.7 (8) Å30.20 × 0.10 × 0.10 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer1055 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
graphiteθmax = 25.3°, θmin = 2.2°
ω/2θ scansh = 0→16
Absorption correction: ψ scan (North et al., 1968)k = −9→9
Tmin = 0.502, Tmax = 0.690l = −23→21
3739 measured reflections3 standard reflections every 120 min
1873 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.044P)2] where P = (Fo2 + 2Fc2)/3
1873 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.14001 (5)0.10006 (10)0.25541 (4)0.0690 (3)
O10.3414 (6)−0.3704 (8)−0.1100 (3)0.114 (2)
O20.3855 (4)−0.5164 (7)−0.0136 (3)0.0823 (16)
O30.3187 (3)0.2414 (5)0.1386 (2)0.0474 (10)
O40.3549 (3)0.0826 (5)0.2389 (2)0.0550 (11)
N0.3685 (4)−0.3840 (8)−0.0450 (4)0.0628 (16)
C10.3826 (4)−0.2328 (8)0.0002 (3)0.0436 (15)
C20.4247 (4)−0.2437 (8)0.0752 (3)0.0485 (16)
H2A0.4448−0.34430.09800.058*
C30.4364 (5)−0.1024 (8)0.1156 (3)0.0508 (15)
H3A0.4656−0.10810.16660.061*
C40.4064 (4)0.0471 (8)0.0832 (3)0.0428 (15)
C50.3638 (4)0.0536 (8)0.0067 (3)0.0482 (16)
H5A0.34300.1538−0.01640.058*
C60.3524 (4)−0.0851 (8)−0.0343 (3)0.0515 (17)
H6A0.3243−0.0801−0.08540.062*
C70.4165 (4)0.1993 (8)0.1284 (3)0.0483 (15)
H7A0.46810.18280.17620.058*
H7B0.43840.28930.10410.058*
C80.2977 (4)0.1691 (8)0.1950 (3)0.0429 (14)
C90.1933 (4)0.2229 (8)0.1920 (3)0.0540 (16)
H9A0.14740.21240.14170.065*
H9B0.19570.33770.20550.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0593 (4)0.0744 (5)0.0828 (5)0.0128 (4)0.0362 (4)0.0107 (5)
O10.189 (6)0.076 (5)0.065 (3)0.000 (5)0.028 (4)−0.022 (3)
O20.102 (4)0.036 (3)0.100 (4)−0.008 (3)0.021 (3)−0.004 (3)
O30.044 (2)0.045 (3)0.051 (2)0.010 (2)0.0132 (18)0.003 (2)
O40.044 (2)0.056 (3)0.061 (2)0.010 (2)0.012 (2)0.020 (3)
N0.059 (3)0.056 (5)0.070 (4)−0.008 (3)0.018 (3)−0.011 (4)
C10.033 (3)0.037 (4)0.060 (4)0.000 (3)0.015 (3)−0.002 (3)
C20.049 (3)0.039 (4)0.055 (4)0.004 (3)0.014 (3)0.007 (3)
C30.057 (3)0.044 (4)0.047 (3)0.005 (4)0.011 (3)0.002 (4)
C40.029 (3)0.046 (4)0.054 (4)−0.003 (3)0.015 (3)−0.002 (3)
C50.054 (4)0.035 (4)0.052 (4)0.005 (3)0.012 (3)0.008 (3)
C60.049 (4)0.053 (4)0.047 (3)0.001 (3)0.008 (3)0.003 (4)
C70.040 (3)0.044 (4)0.060 (4)−0.004 (3)0.017 (3)0.001 (4)
C80.032 (3)0.042 (4)0.050 (3)−0.006 (3)0.008 (3)−0.010 (3)
C90.046 (3)0.041 (4)0.075 (4)0.005 (3)0.019 (3)0.001 (4)

Geometric parameters (Å, °)

Br—C91.903 (6)C3—H3A0.9300
O3—C71.470 (6)C4—C51.393 (8)
O3—C81.346 (7)C4—C71.496 (8)
O4—C81.183 (7)C5—C61.359 (8)
N—O11.185 (7)C5—H5A0.9300
N—O21.222 (7)C6—H6A0.9300
N—C11.485 (8)C7—H7A0.9700
C1—C21.367 (8)C7—H7B0.9700
C1—C61.373 (8)C8—C91.494 (8)
C2—C31.370 (8)C9—H9A0.9700
C2—H2A0.9300C9—H9B0.9700
C3—C41.371 (8)
C8—O3—C7117.1 (5)C5—C6—C1119.4 (5)
O1—N—O2123.1 (7)C5—C6—H6A120.3
O1—N—C1118.3 (7)C1—C6—H6A120.3
O2—N—C1118.6 (6)O3—C7—C4110.8 (4)
C2—C1—C6121.6 (6)O3—C7—H7A109.5
C2—C1—N119.4 (6)C4—C7—H7A109.5
C6—C1—N119.0 (6)O3—C7—H7B109.5
C1—C2—C3118.2 (6)C4—C7—H7B109.5
C1—C2—H2A120.9H7A—C7—H7B108.1
C3—C2—H2A120.9O4—C8—O3124.3 (5)
C2—C3—C4121.9 (5)O4—C8—C9128.1 (6)
C2—C3—H3A119.0O3—C8—C9107.5 (6)
C4—C3—H3A119.0C8—C9—Br113.2 (5)
C3—C4—C5118.3 (6)C8—C9—H9A108.9
C3—C4—C7121.2 (5)Br—C9—H9A108.9
C5—C4—C7120.5 (6)C8—C9—H9B108.9
C6—C5—C4120.6 (6)Br—C9—H9B108.9
C6—C5—H5A119.7H9A—C9—H9B107.8
C4—C5—H5A119.7
O1—N—C1—C2−172.7 (6)C4—C5—C6—C10.5 (9)
O2—N—C1—C27.3 (8)C2—C1—C6—C5−0.5 (9)
O1—N—C1—C67.6 (9)N—C1—C6—C5179.2 (5)
O2—N—C1—C6−172.4 (6)C8—O3—C7—C485.8 (6)
C6—C1—C2—C3−0.1 (8)C3—C4—C7—O3−98.5 (6)
N—C1—C2—C3−179.8 (5)C5—C4—C7—O379.9 (6)
C1—C2—C3—C40.6 (9)C7—O3—C8—O44.6 (8)
C2—C3—C4—C5−0.6 (9)C7—O3—C8—C9−177.1 (5)
C2—C3—C4—C7177.8 (5)O4—C8—C9—Br−13.4 (8)
C3—C4—C5—C60.1 (8)O3—C8—C9—Br168.3 (4)
C7—C4—C5—C6−178.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7A···O4i0.972.593.486 (7)153
C9—H9B···O4ii0.972.473.376 (8)155

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2706).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Pyun, D. K., Jeong, W. J., Jung, H. J., Kim, J. H., Lee, J. S., Lee, C. H. & Kim, B. J. (2001). Synlett, 12, 1950–1952.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography