PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m836–m837.
Published online 2009 June 27. doi:  10.1107/S1600536809022764
PMCID: PMC2969482

Chloridobis(ethyl­enediamine-κ2 N,N′)(n-pentyl­amine-κN)cobalt(III) dichloride monhydrate

Abstract

The title complex, [CoCl(C5H13N)(C2H8N2)2]Cl2·H2O, comprises one chloridobis(ethyl­enediamine)(n-pentyl­amine)cobalt(III) cation, two chloride counter-anions and a water mol­ecule. The CoIII atom of the complex is hexa­coordinated by five N and one Cl atoms. The five N atoms are from two chelating ethyl­enediamine and one n-pentyl­amine ligands. Neighbouring cations and anions are connected by N—H(...)Cl and N—H(...)O hydrogen bonds to each other and also to the water mol­ecule.

Related literature

For the potential applications of metal–chelate complexes, see: Tweedy (1964 [triangle]); Kralova et al. (2004 [triangle]); Parekh et al. (2005 [triangle]); Rajevel et al. (2008 [triangle]). For cobalt(III) complexes, see: Bailer & Clapp (1945 [triangle]); Bailer & Rollinson (1946 [triangle]). For a related structure, see: Ou et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m836-scheme1.jpg

Experimental

Crystal data

  • [CoCl(C5H13N)(C2H8N2)2]Cl2·H2O
  • M r = 390.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m836-efi1.jpg
  • a = 10.5214 (3) Å
  • b = 7.2294 (2) Å
  • c = 23.6225 (6) Å
  • β = 96.117 (2)°
  • V = 1786.58 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.41 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker Kappa-APEX2 CCD diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.719, T max = 0.816
  • 23262 measured reflections
  • 5510 independent reflections
  • 4506 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.090
  • S = 1.10
  • 5510 reflections
  • 181 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022764/bq2142sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022764/bq2142Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KA thanks the Department of Science and Technology, Goverment of India, for financial assistance and the Council of Scientific & Industrial Research–Human Resource Development Group, New Delhi, for support through a major research project.

supplementary crystallographic information

Comment

Metal-chelate complexes find potential applications in the research fields (Tweedy, 1964; Kralova et al., 2004) of antitumor activity, enzyme catalysis, functioning of micro organisms and in the respiration processes of biological systems (Parekh et al., 2005; Rajevel et al., 2008). Chelating ligand such as ethylenediamine has been widely used to prepare a number of cobalt(III) complexes (Bailer & Clapp, 1945; Bailer & Rollinson, 1946). A structural analogue of the cobalt(III)-alkyl amine complex, such as chloro(n-pentyl amine)bis(ethylenediamine)cobalt(III) chloride, [CoIII(en)2(nPentNH2) Cl]Cl2, is studied. Cobalt(III) complex consisting of n-PentNH2 ligand, is an interesting complex showing some novel reactivity. Hence, single-crystal X-ray study of the above compound has been carried out.

The molecular structure of the title compound is shown in Fig. 1. The title compound, Cis-[CoIII(en)2(nPentNH2)Cl]Cl2.H2O, is a mononuclear cobalt(III) complex. The Co(III) atom is hexa-coordinated by six ligating atoms (five N and one Cl) forming two chelating ethylenediamine ligands, leading to a slightly distorted octahedral configuration. The two chloride ions act as counter-ions. The average Co— N bond length is 1.963 (4) Å and agrees well with related literature (Ou et al., 2007).

The crystal structure is stabilized by intramolecular N—H···O and N—H···Cl interactions. The molecules are linked into three-dimensional framework by N—H···Cl and C—H···Cl intermolecular interactions (Fig. 2, Table 1).

Experimental

A modified method of synthesize of cis-[CoIII(en)2(nPentNH2)Cl]Cl2.H2O was developed by substituting chloride ligand with AnalaR n-pentyl amine in trans-[Co(en)2Cl2]Cl. AnalaR n-pentyl amine (2–3 ml) was added in drops to a paste of 2 g of the trans-dichlorobis(1,2-diamino ethane)cobalt(III) chloride suspended in 1 ml of water. The mixture was ground for an hour until the solid becomes rosy red, and allowed overnight. The complex was recrystallized from acidified water. Single crystal was grown by adding the metal complex in triply distilled water containing few drops of conc. HCl and kept at 0°C for 2–3 weeks.

Refinement

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.97Å and 0.96Å for methylene and methyl H respectively, and N—H = 0.86Å, and with Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C,N) for all other H atoms. The H atoms of the water molecule were located in a difference Fourier map and their positional parameters refined with Uiso(H) = 1.5Ueq(O), and with the O—H distances restrained to be 0.85 (1)Å.

Figures

Fig. 1.
The molecular structure of the title compound with 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
Fig. 2.
The packing of the molecules viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted.

Crystal data

[CoCl(C5H13N)(C2H8N2)2]Cl2·H2OF(000) = 824
Mr = 390.67Dx = 1.452 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8809 reflections
a = 10.5214 (3) Åθ = 2.9–30.6°
b = 7.2294 (2) ŵ = 1.41 mm1
c = 23.6225 (6) ÅT = 293 K
β = 96.117 (2)°Prismatic, orange
V = 1786.58 (8) Å30.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker Kappa-APEX2 CCD diffractometer5510 independent reflections
Radiation source: fine-focus sealed tube4506 reflections with I > 2σ(I)
graphiteRint = 0.029
ω and [var phi] scansθmax = 30.7°, θmin = 1.7°
Absorption correction: multi-scan (Blessing, 1995)h = −15→15
Tmin = 0.719, Tmax = 0.816k = −8→10
23262 measured reflectionsl = −33→33

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090w = 1/[σ2(Fo2) + (0.0497P)2 + 0.0821P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.006
5510 reflectionsΔρmax = 0.52 e Å3
181 parametersΔρmin = −0.35 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6942 (2)0.3891 (2)0.95347 (8)0.0391 (4)
H1A0.63170.47500.96570.047*
H1B0.76750.45920.94390.047*
C20.73406 (18)0.2535 (2)1.00007 (8)0.0352 (4)
H2A0.78460.31451.03140.042*
H2B0.65970.19821.01430.042*
C30.95703 (17)0.0374 (3)0.84080 (8)0.0387 (4)
H3A1.04000.09130.83680.046*
H3B0.9209−0.00740.80380.046*
C40.96996 (17)−0.1182 (3)0.88299 (8)0.0364 (4)
H4A1.0107−0.22370.86700.044*
H4B1.0220−0.07980.91730.044*
C50.52205 (16)0.0781 (2)0.80180 (8)0.0328 (4)
H5A0.53490.20920.79570.039*
H5B0.46560.06530.83150.039*
C60.45868 (16)−0.0068 (3)0.74740 (7)0.0337 (4)
H6A0.4451−0.13770.75350.040*
H6B0.51520.00530.71770.040*
C70.33189 (17)0.0838 (3)0.72777 (8)0.0384 (4)
H7A0.34530.21550.72340.046*
H7B0.27450.06730.75690.046*
C80.26886 (18)0.0065 (3)0.67194 (8)0.0393 (4)
H8A0.32790.01690.64330.047*
H8B0.2510−0.12380.67690.047*
C90.1464 (2)0.1043 (4)0.65112 (12)0.0659 (7)
H9A0.11080.05010.61580.099*
H9B0.16360.23290.64530.099*
H9C0.08670.09220.67890.099*
N10.63802 (13)0.28252 (18)0.90348 (6)0.0277 (3)
H1C0.64090.35010.87170.033*
H1D0.55560.25670.90720.033*
N20.81072 (13)0.11089 (18)0.97448 (5)0.0262 (3)
H2C0.81440.00810.99610.031*
H2D0.89100.15250.97310.031*
N30.87124 (13)0.1775 (2)0.86270 (6)0.0304 (3)
H3C0.83780.25010.83390.036*
H3D0.91610.24950.88870.036*
N40.84066 (13)−0.16872 (19)0.89632 (6)0.0287 (3)
H4C0.8457−0.22490.93050.034*
H4D0.8052−0.24850.87000.034*
N50.64631 (13)−0.0082 (2)0.82114 (6)0.0280 (3)
H5C0.70050.02010.79540.034*
H5D0.6350−0.13160.81970.034*
O10.3655 (2)0.2049 (5)0.92521 (12)0.1255 (12)
Cl10.58524 (4)−0.11512 (6)0.935779 (18)0.03265 (10)
Cl21.09085 (4)0.29130 (6)0.96604 (2)0.03712 (11)
Cl30.71601 (4)0.54255 (6)0.799916 (18)0.03417 (10)
Co10.733516 (18)0.05224 (3)0.897435 (8)0.02096 (7)
H1E0.2883 (17)0.237 (6)0.9277 (18)0.17 (2)*
H1F0.394 (3)0.137 (4)0.9526 (11)0.112 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0500 (11)0.0276 (8)0.0377 (10)0.0041 (7)−0.0040 (8)−0.0063 (7)
C20.0430 (10)0.0363 (9)0.0258 (8)0.0007 (7)0.0007 (7)−0.0091 (7)
C30.0290 (8)0.0591 (12)0.0287 (9)0.0046 (8)0.0069 (7)−0.0004 (8)
C40.0280 (8)0.0435 (10)0.0368 (10)0.0095 (7)−0.0005 (7)−0.0062 (8)
C50.0286 (8)0.0373 (9)0.0305 (9)0.0047 (6)−0.0068 (6)−0.0044 (7)
C60.0306 (8)0.0408 (9)0.0279 (9)0.0023 (7)−0.0056 (6)−0.0024 (7)
C70.0321 (9)0.0480 (10)0.0328 (10)0.0057 (7)−0.0068 (7)−0.0062 (8)
C80.0350 (9)0.0469 (10)0.0331 (10)0.0021 (8)−0.0097 (7)−0.0036 (8)
C90.0468 (13)0.0812 (17)0.0632 (16)0.0152 (12)−0.0241 (11)−0.0116 (13)
N10.0287 (7)0.0261 (6)0.0278 (7)0.0018 (5)0.0005 (5)0.0014 (5)
N20.0274 (6)0.0286 (6)0.0218 (6)−0.0027 (5)−0.0017 (5)−0.0002 (5)
N30.0264 (6)0.0369 (7)0.0274 (7)−0.0017 (5)0.0017 (5)0.0070 (6)
N40.0313 (7)0.0283 (6)0.0250 (7)0.0035 (5)−0.0037 (5)−0.0030 (5)
N50.0276 (6)0.0345 (7)0.0208 (6)0.0030 (5)−0.0032 (5)−0.0009 (5)
O10.0775 (15)0.188 (3)0.121 (2)0.0730 (17)0.0573 (15)0.104 (2)
Cl10.0302 (2)0.0344 (2)0.0332 (2)−0.00734 (15)0.00280 (15)0.00406 (16)
Cl20.0307 (2)0.0406 (2)0.0387 (2)−0.00616 (16)−0.00247 (16)0.00198 (18)
Cl30.0438 (2)0.0327 (2)0.0259 (2)−0.00019 (16)0.00328 (16)−0.00105 (15)
Co10.02095 (11)0.02308 (11)0.01830 (11)−0.00082 (7)−0.00051 (7)0.00072 (7)

Geometric parameters (Å, °)

C1—N11.479 (2)C8—C91.505 (3)
C1—C21.501 (3)C8—H8A0.9700
C1—H1A0.9700C8—H8B0.9700
C1—H1B0.9700C9—H9A0.9600
C2—N21.477 (2)C9—H9B0.9600
C2—H2A0.9700C9—H9C0.9600
C2—H2B0.9700N1—Co11.9575 (13)
C3—N31.485 (2)N1—H1C0.9000
C3—C41.500 (3)N1—H1D0.9000
C3—H3A0.9700N2—Co11.9588 (13)
C3—H3B0.9700N2—H2C0.9000
C4—N41.475 (2)N2—H2D0.9000
C4—H4A0.9700N3—Co11.9611 (13)
C4—H4B0.9700N3—H3C0.9000
C5—N51.477 (2)N3—H3D0.9000
C5—C61.513 (2)N4—Co11.9569 (13)
C5—H5A0.9700N4—H4C0.9000
C5—H5B0.9700N4—H4D0.9000
C6—C71.514 (2)N5—Co11.9822 (13)
C6—H6A0.9700N5—H5C0.9000
C6—H6B0.9700N5—H5D0.9000
C7—C81.518 (2)O1—H1E0.852 (10)
C7—H7A0.9700O1—H1F0.841 (10)
C7—H7B0.9700Cl1—Co12.2403 (4)
N1—C1—C2107.56 (14)H9A—C9—H9B109.5
N1—C1—H1A110.2C8—C9—H9C109.5
C2—C1—H1A110.2H9A—C9—H9C109.5
N1—C1—H1B110.2H9B—C9—H9C109.5
C2—C1—H1B110.2C1—N1—Co1109.70 (11)
H1A—C1—H1B108.5C1—N1—H1C109.7
N2—C2—C1106.15 (14)Co1—N1—H1C109.7
N2—C2—H2A110.5C1—N1—H1D109.7
C1—C2—H2A110.5Co1—N1—H1D109.7
N2—C2—H2B110.5H1C—N1—H1D108.2
C1—C2—H2B110.5C2—N2—Co1109.93 (10)
H2A—C2—H2B108.7C2—N2—H2C109.7
N3—C3—C4107.18 (14)Co1—N2—H2C109.7
N3—C3—H3A110.3C2—N2—H2D109.7
C4—C3—H3A110.3Co1—N2—H2D109.7
N3—C3—H3B110.3H2C—N2—H2D108.2
C4—C3—H3B110.3C3—N3—Co1109.55 (11)
H3A—C3—H3B108.5C3—N3—H3C109.8
N4—C4—C3107.89 (14)Co1—N3—H3C109.8
N4—C4—H4A110.1C3—N3—H3D109.8
C3—C4—H4A110.1Co1—N3—H3D109.8
N4—C4—H4B110.1H3C—N3—H3D108.2
C3—C4—H4B110.1C4—N4—Co1110.28 (11)
H4A—C4—H4B108.4C4—N4—H4C109.6
N5—C5—C6112.74 (14)Co1—N4—H4C109.6
N5—C5—H5A109.0C4—N4—H4D109.6
C6—C5—H5A109.0Co1—N4—H4D109.6
N5—C5—H5B109.0H4C—N4—H4D108.1
C6—C5—H5B109.0C5—N5—Co1119.79 (10)
H5A—C5—H5B107.8C5—N5—H5C107.4
C5—C6—C7112.26 (15)Co1—N5—H5C107.4
C5—C6—H6A109.2C5—N5—H5D107.4
C7—C6—H6A109.2Co1—N5—H5D107.4
C5—C6—H6B109.2H5C—N5—H5D106.9
C7—C6—H6B109.2H1E—O1—H1F111.3 (17)
H6A—C6—H6B107.9N4—Co1—N1174.92 (6)
C6—C7—C8113.34 (15)N4—Co1—N290.39 (6)
C6—C7—H7A108.9N1—Co1—N285.03 (6)
C8—C7—H7A108.9N4—Co1—N385.34 (6)
C6—C7—H7B108.9N1—Co1—N392.63 (6)
C8—C7—H7B108.9N2—Co1—N392.13 (6)
H7A—C7—H7B107.7N4—Co1—N591.10 (6)
C9—C8—C7112.99 (18)N1—Co1—N593.59 (6)
C9—C8—H8A109.0N2—Co1—N5176.89 (6)
C7—C8—H8A109.0N3—Co1—N590.71 (6)
C9—C8—H8B109.0N4—Co1—Cl189.52 (4)
C7—C8—H8B109.0N1—Co1—Cl192.57 (4)
H8A—C8—H8B107.8N2—Co1—Cl188.79 (4)
C8—C9—H9A109.5N3—Co1—Cl1174.78 (4)
C8—C9—H9B109.5N5—Co1—Cl188.49 (4)
N1—C1—C2—N250.28 (19)C1—N1—Co1—N3−79.47 (12)
N3—C3—C4—N448.28 (19)C1—N1—Co1—N5−170.35 (12)
N5—C5—C6—C7−179.58 (16)C1—N1—Co1—Cl1101.00 (11)
C5—C6—C7—C8177.60 (17)C2—N2—Co1—N4−166.25 (11)
C6—C7—C8—C9−176.9 (2)C2—N2—Co1—N115.94 (11)
C2—C1—N1—Co1−37.75 (17)C2—N2—Co1—N3108.40 (11)
C1—C2—N2—Co1−40.09 (16)C2—N2—Co1—Cl1−76.74 (10)
C4—C3—N3—Co1−38.51 (17)C3—N3—Co1—N415.27 (11)
C3—C4—N4—Co1−36.06 (16)C3—N3—Co1—N1−169.40 (11)
C6—C5—N5—Co1−170.27 (12)C3—N3—Co1—N2105.48 (11)
C4—N4—Co1—N2−80.28 (11)C3—N3—Co1—N5−75.78 (12)
C4—N4—Co1—N311.82 (11)C5—N5—Co1—N4161.69 (13)
C4—N4—Co1—N5102.45 (11)C5—N5—Co1—N1−20.28 (13)
C4—N4—Co1—Cl1−169.07 (11)C5—N5—Co1—N3−112.95 (13)
C1—N1—Co1—N212.44 (12)C5—N5—Co1—Cl172.21 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl30.902.393.2589 (14)162
N1—H1D···O10.902.123.018 (3)174
N3—H3C···Cl30.902.563.3641 (14)150
N4—H4D···Cl3i0.902.363.2597 (14)179
N4—H4C···Cl2ii0.902.513.3731 (15)161
N5—H5C···Cl3iii0.902.513.3605 (15)158
N5—H5D···Cl3i0.902.563.3784 (15)151
C3—H3B···Cl3iii0.972.733.616 (2)152

Symmetry codes: (i) x, y−1, z; (ii) −x+2, −y, −z+2; (iii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2142).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bailer, J. C. & Clapp, L. B. (1945). J. Am. Chem. Soc 67, 171–175.
  • Bailer, J. C. & Rollinson, C. L. (1946). Inorg. Synth 22, 222–223.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruker (2004). APEX2 SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kralova, K., Kissova, K., Svajlenova, O. & Vanco, J. (2004). Chem. Pap 58, 357–361.
  • Ou, G.-C., Chen, H.-Y., Zhang, M. & Yuan, X.-Y. (2007). Acta Cryst. E63, m36–m38.
  • Parekh, J., Inamdhar, P., Nair, R., Baluja, S. & Chanda, S. (2005). J. Serb. Chem. Soc 70, 1155–1161.
  • Rajevel, R., Senthil Vadivu, M. & Anitha, C. (2008). Eur. J. Chem 5, 620.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tweedy, B. G. (1964). Phytopathology, 55, 910–914.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography