PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1557–o1558.
Published online 2009 June 13. doi:  10.1107/S1600536809021655
PMCID: PMC2969477

4-(sec-Butyl­amino)-3-nitro­benzoic acid

Abstract

The asymmetric unit of title compound, C11H14N2O4, consists of two crystallographically independent mol­ecules (A and B). In each, intra­molecular N—H(...)O hydrogen bonds generate S(6) ring motifs. The mean plane of the nitro group forms dihedral angles of 4.5 (3) and 0.5 (3)° with the benzene ring in mol­ecules A and B, respectively. In mol­ecule A, there is disorder of the butyl­amino group which corresponds to an approximate 180° rotation about the N—C(H) bond, forming two sites with refined occupancies of 0.722 (6) and 0.278 (6). Mol­ecule B is similarly disordered but in addition there is further rotational disorder about the C(H)—C(H2) bond giving a ratio of occupancies for three components of 0.42:0.35:0.23. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link mol­ecules into centrosymmetric dimers generating R 2 2(8) ring motifs. The crystal structure is also stabilized by weak inter­molecular C—H(...)O inter­actions.

Related literature

For the synthesis of bioactive heterocycles using nitro benzoic acid derivatives as the starting materials, see: Burgey et al. (2006 [triangle]); Ishida et al. (2006 [triangle]); Semple et al. (2006 [triangle]); Narendra Babu et al. (2009 [triangle]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1557-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O4
  • M r = 238.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1557-efi1.jpg
  • a = 6.9722 (4) Å
  • b = 15.7250 (8) Å
  • c = 21.8111 (11) Å
  • β = 101.896 (3)°
  • V = 2340.0 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 110 K
  • 0.57 × 0.08 × 0.04 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.922, T max = 0.995
  • 23247 measured reflections
  • 4600 independent reflections
  • 3357 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.165
  • S = 1.08
  • 4600 reflections
  • 335 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021655/lh2837sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021655/lh2837Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SNNB, ASAR and SAH acknowledge Universiti Sains Malaysia (USM) for a University Research Grant for the synthetic chemistry work (No. 1001/PFARMASI/815026). SNNB thanks USM for a Postdoctoral Research Fellowship. HKF thanks USM for a Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks the Malaysian Government and USM for the award of the post of Research Officer under the Science Fund Grant (No. 305/PFIZIK/613312).

supplementary crystallographic information

Comment

The synthesis of bioactive heterocycles such as substituted benzimidazolones, benzimidazoles and 1-substituted benzotriazole carboxylic acids, (Burgey et al., 2006; Ishida et al., 2006; Semple et al., 2006), can be achieved from nitro benzoic acid derivatives as the starting materials. As part of our ongoing synthesis programme, (Narendra Babu et al., 2009), we have synthesized the title compound as an intermediate and herein present its crystal structure.

The asymmetric unit of title compound (I), (Figs. 1 and 2), consists of two crystallographically independent molecule A and B. Intramolecular N2A—H2NA···O4A and N2B—H2NB···O4B hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). The nitro group for molecule A is almost planar with the benzene ring whereas the nitro group for molecule B is essentially coplanar with benzene ring [dihedral angle, A = 4.5 (3)° and B = 0.5 (3)°].

In molecule A there is disorder of the butylamino group which corresponds to an approximate 180° rotation about the N-C(H) bond forming two sites with refined occupancies of 0.722 (6) and 0.278 (6). Molecule B is similarly disordered but in addition there is further rotational disorder about the C(H)-C(H2) bond giving a ratio of occupancies for three components of 0.42:0.35:0.23 (see Fig. 1).

In the crystal structure, intermolecular O—H···O hydrogen bonds (see Table 1) link molecules into centrosymmetric dimers (Fig. 3) to generate R22(8) ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by weak intermolecular C—H···O interactions (Table 1).

Experimental

Ethyl 4-(sec-butylamino)-3-nitro-benzoate (0.2 g, 0.00075 mol) and KOH (0.084 g, 0.0015 mol) was refluxed in aqueous ethanol (5 ml) for 3 h. After completion of the reaction, ethanol was distilled off and the reaction mixture was diluted with water (5 ml). The aqueous layer was washed with dichloromethane (5 ml x 2) and acidified with concentrated hydrochloric acid to afford yellow solid. Recrystallisation of the crude product with hot ethyl acetate afforded yellow crystals.

Refinement

Atoms H2NA and H2NB were located in a difference Fourier map and refined freely. The H-atoms of the hydroxy groups were positioned using a rotating group model and constrained with a fixed distance of 0.82 Å. The H-atoms for C8A, C10A, C8B and C10B were positioned geometrically and refined as riding with the parent atom with Uiso(H) = 1.2 and 1.5 Ueq(C). The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with C-H = 0.93–0.96 Å and Uiso(H) = 1.2 and 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The methyl group of molecule A is disordered over two positions with refined site-occupancy ratio of 0.722 (6) : 0.278 (6), whereas the methyl group of molecule B is treated as disordered over three positions with refined site-occupancy ratio of 0.413 (9) : 0.327 (8) : 0.237 (9) with SUMP command equal to 1.0 (1). For the final refinement, the site-occupancy ratio of molecule B is fixed to 0.42 : 0.35 : 0.23. The same Uij parameters were used for atom pairs C9D/C9A, C9A/C8B and C9A/C9C. The C9E–C10B bond was refined with C-C distance restraint of 1.40 Å.

Figures

Fig. 1.
The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines. All disorder components are shown.
Fig. 2.
The major disorder component of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
Fig. 3.
The crystal packing of the title compound, showing the centrosymmetric dimers. Intermolecular hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.

Crystal data

C11H14N2O4F(000) = 1008
Mr = 238.24Dx = 1.353 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5403 reflections
a = 6.9722 (4) Åθ = 2.3–26.2°
b = 15.7250 (8) ŵ = 0.10 mm1
c = 21.8111 (11) ÅT = 110 K
β = 101.896 (3)°Needle, yellow
V = 2340.0 (2) Å30.57 × 0.08 × 0.04 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4600 independent reflections
Radiation source: fine-focus sealed tube3357 reflections with I > 2σ(I)
graphiteRint = 0.049
[var phi] and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −8→8
Tmin = 0.922, Tmax = 0.995k = −16→19
23247 measured reflectionsl = −26→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0456P)2 + 3.6565P] where P = (Fo2 + 2Fc2)/3
4600 reflections(Δ/σ)max < 0.001
335 parametersΔρmax = 0.56 e Å3
2 restraintsΔρmin = −0.59 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 110.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O1A0.4975 (3)0.90262 (13)0.95499 (9)0.0352 (5)
H1OA0.49830.92200.98990.053*
O2A0.5198 (3)1.04071 (13)0.93205 (9)0.0347 (5)
O3A0.5205 (3)1.11848 (13)0.71999 (10)0.0404 (6)
O4A0.5426 (4)1.02816 (15)0.64713 (10)0.0477 (6)
N1A0.5280 (4)1.04472 (16)0.70177 (12)0.0325 (6)
N2A0.5194 (4)0.86394 (17)0.66720 (12)0.0310 (6)
C1A0.5195 (4)0.97566 (18)0.74513 (13)0.0272 (6)
C2A0.5183 (4)0.99913 (19)0.80664 (13)0.0276 (6)
H2AA0.52151.05640.81740.033*
C3A0.5126 (4)0.93828 (18)0.85192 (13)0.0260 (6)
C4A0.5080 (4)0.85228 (19)0.83378 (14)0.0304 (7)
H4AA0.50450.81040.86360.036*
C5A0.5086 (4)0.82863 (19)0.77366 (13)0.0310 (7)
H5AA0.50440.77110.76360.037*
C6A0.5155 (4)0.88925 (18)0.72596 (13)0.0271 (6)
C7A0.5153 (4)0.77568 (19)0.64471 (14)0.0324 (7)
H7AA0.59970.74150.67700.039*
C8A0.6020 (5)0.7739 (2)0.58601 (14)0.0415 (8)
H8AA0.60470.71630.57160.050*0.722 (6)
H8AB0.73450.79440.59610.050*0.722 (6)
H8AC0.60470.71630.57160.062*0.278 (6)
H8AD0.73450.79440.59610.062*0.278 (6)
H8AE0.52100.80650.55340.062*0.278 (6)
C9A0.4827 (11)0.8285 (4)0.5329 (3)0.0793 (11)0.722 (6)
H9AA0.53000.81930.49510.119*0.722 (6)
H9AB0.49670.88750.54430.119*0.722 (6)
H9AC0.34690.81270.52620.119*0.722 (6)
C9C0.186 (3)0.7705 (12)0.5685 (6)0.0793 (11)0.278 (6)
H9CA0.05560.74730.56200.119*0.278 (6)
H9CB0.24780.75220.53540.119*0.278 (6)
H9CC0.17860.83150.56860.119*0.278 (6)
C10A0.3092 (5)0.7385 (2)0.63375 (15)0.0407 (8)
H10A0.26110.74130.67190.061*0.722 (6)
H10B0.22440.77060.60180.061*0.722 (6)
H10C0.31200.68030.62070.061*0.722 (6)
H10D0.24650.75540.66710.049*0.278 (6)
H10E0.31560.67750.63340.049*0.278 (6)
C11A0.5106 (4)0.96526 (19)0.91601 (13)0.0279 (6)
O1B0.9570 (3)0.58178 (15)0.55036 (10)0.0404 (6)
H1OB0.96710.56900.51470.061*
O2B1.0142 (3)0.44245 (15)0.56615 (10)0.0401 (6)
O3B1.0282 (3)0.32730 (14)0.77010 (10)0.0411 (6)
O4B0.9980 (3)0.40380 (15)0.84984 (10)0.0446 (6)
N1B1.0041 (3)0.39668 (17)0.79356 (12)0.0330 (6)
N2B0.9466 (4)0.5691 (2)0.83945 (12)0.0393 (7)
C1B0.9824 (4)0.47178 (18)0.75471 (13)0.0268 (6)
C2B0.9906 (4)0.46020 (19)0.69198 (13)0.0268 (6)
H2BA1.01040.40600.67730.032*
C3B0.9699 (4)0.5281 (2)0.65165 (13)0.0289 (7)
C4B0.9402 (4)0.60957 (19)0.67420 (13)0.0308 (7)
H4BA0.92560.65580.64710.037*
C5B0.9326 (4)0.6215 (2)0.73584 (14)0.0333 (7)
H5BA0.91180.67610.74950.040*
C6B0.9549 (4)0.5542 (2)0.77919 (13)0.0298 (7)
C7B0.9414 (5)0.6537 (2)0.86791 (16)0.0504 (10)
H7BA0.84140.68780.84050.061*
C8B0.8803 (8)0.6422 (3)0.92986 (19)0.0793 (11)
H8BA0.95650.59830.95410.095*0.42
H8BB0.74490.62570.92250.095*0.42
H8BC0.74140.65190.92120.095*0.35
H8BD0.93830.68870.95560.095*0.35
H8BE0.75650.61320.92310.119*0.23
H8BF0.97670.60950.95800.119*0.23
H8BG0.86750.69720.94770.119*0.23
C9B0.9071 (12)0.7303 (5)0.9672 (4)0.044 (2)0.42
H9BA0.88960.72131.00920.066*0.42
H9BB0.81140.77040.94650.066*0.42
H9BC1.03630.75220.96820.066*0.42
C9D0.914 (2)0.5772 (9)0.9672 (5)0.0793 (11)0.35
H9DA0.85170.52770.94610.119*0.35
H9DB0.86130.58811.00380.119*0.35
H9DC1.05230.56780.97920.119*0.35
C9E1.092 (3)0.7665 (8)0.9122 (8)0.081 (7)0.23
H9EA1.17560.81400.90850.121*0.23
H9EB1.11370.74870.95520.121*0.23
H9EC0.95770.78290.89830.121*0.23
C10B1.1359 (6)0.6989 (3)0.8750 (2)0.0694 (13)
H10F1.16840.70360.83450.104*0.42
H10G1.12680.75470.89200.104*0.42
H10H1.23600.66710.90240.104*0.42
H10I1.16840.70360.83450.104*0.35
H10J1.12680.75470.89200.104*0.35
H10K1.23600.66710.90240.104*0.35
H10L1.16100.71520.83500.083*0.23
H10M1.24280.66520.89710.083*0.23
C11B0.9816 (4)0.5153 (2)0.58518 (13)0.0307 (7)
H2NA0.523 (5)0.903 (2)0.6440 (15)0.031 (9)*
H2NB0.961 (5)0.522 (2)0.8616 (17)0.053 (12)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0455 (13)0.0321 (12)0.0299 (11)−0.0005 (10)0.0117 (10)−0.0033 (9)
O2A0.0423 (13)0.0312 (12)0.0315 (11)−0.0004 (10)0.0095 (9)−0.0036 (9)
O3A0.0496 (14)0.0281 (12)0.0448 (13)−0.0035 (10)0.0130 (11)0.0000 (10)
O4A0.0692 (17)0.0418 (14)0.0355 (13)−0.0061 (12)0.0187 (12)−0.0002 (10)
N1A0.0310 (14)0.0316 (15)0.0359 (15)−0.0030 (11)0.0088 (11)−0.0023 (11)
N2A0.0318 (14)0.0326 (15)0.0279 (14)0.0001 (11)0.0048 (11)0.0012 (12)
C1A0.0183 (13)0.0321 (16)0.0307 (15)0.0016 (12)0.0037 (11)0.0047 (12)
C2A0.0180 (13)0.0289 (15)0.0349 (16)0.0000 (11)0.0033 (12)−0.0042 (13)
C3A0.0195 (13)0.0302 (16)0.0287 (15)0.0015 (11)0.0056 (12)−0.0003 (12)
C4A0.0260 (15)0.0306 (16)0.0344 (16)0.0010 (12)0.0058 (13)0.0037 (13)
C5A0.0329 (16)0.0271 (16)0.0325 (16)0.0023 (13)0.0052 (13)−0.0033 (13)
C6A0.0185 (13)0.0298 (16)0.0318 (15)0.0020 (12)0.0024 (12)−0.0032 (13)
C7A0.0341 (16)0.0321 (17)0.0294 (15)0.0024 (13)0.0027 (13)−0.0061 (13)
C8A0.0405 (18)0.050 (2)0.0341 (17)−0.0005 (16)0.0078 (14)−0.0102 (15)
C9A0.112 (3)0.091 (3)0.0410 (17)0.009 (2)0.0301 (19)−0.0072 (17)
C9C0.112 (3)0.091 (3)0.0410 (17)0.009 (2)0.0301 (19)−0.0072 (17)
C10A0.0396 (18)0.0367 (18)0.0433 (19)−0.0024 (15)0.0032 (15)−0.0039 (15)
C11A0.0189 (14)0.0338 (17)0.0301 (16)−0.0009 (12)0.0032 (12)−0.0022 (13)
O1B0.0443 (13)0.0517 (14)0.0261 (11)0.0019 (11)0.0093 (10)0.0018 (10)
O2B0.0418 (13)0.0476 (14)0.0312 (12)−0.0007 (11)0.0078 (10)−0.0070 (10)
O3B0.0414 (13)0.0321 (13)0.0478 (14)0.0005 (10)0.0043 (11)0.0024 (11)
O4B0.0488 (14)0.0551 (15)0.0301 (12)0.0012 (12)0.0087 (10)0.0109 (11)
N1B0.0239 (13)0.0383 (16)0.0358 (14)−0.0015 (11)0.0041 (11)0.0050 (12)
N2B0.0423 (16)0.0478 (18)0.0271 (14)0.0093 (13)0.0054 (12)−0.0035 (13)
C1B0.0183 (13)0.0331 (16)0.0287 (15)0.0008 (12)0.0042 (11)0.0007 (12)
C2B0.0164 (13)0.0342 (16)0.0299 (15)−0.0011 (12)0.0048 (11)−0.0045 (13)
C3B0.0163 (13)0.0415 (18)0.0279 (15)−0.0023 (12)0.0026 (11)−0.0041 (13)
C4B0.0279 (15)0.0340 (17)0.0297 (15)−0.0002 (13)0.0039 (12)0.0048 (13)
C5B0.0280 (15)0.0353 (17)0.0354 (17)0.0059 (13)0.0035 (13)−0.0045 (14)
C6B0.0215 (14)0.0421 (18)0.0247 (15)0.0039 (13)0.0020 (12)0.0011 (13)
C7B0.054 (2)0.061 (2)0.0341 (18)0.0158 (19)0.0043 (16)−0.0147 (17)
C8B0.112 (3)0.091 (3)0.0410 (17)0.009 (2)0.0301 (19)−0.0072 (17)
C9B0.047 (5)0.047 (5)0.042 (4)0.010 (4)0.020 (4)−0.008 (4)
C9D0.112 (3)0.091 (3)0.0410 (17)0.009 (2)0.0301 (19)−0.0072 (17)
C9E0.113 (17)0.041 (10)0.080 (14)−0.033 (11)0.000 (12)0.013 (10)
C10B0.059 (3)0.065 (3)0.071 (3)0.012 (2)−0.018 (2)−0.036 (2)
C11B0.0210 (14)0.0426 (19)0.0275 (15)−0.0022 (13)0.0031 (12)−0.0003 (14)

Geometric parameters (Å, °)

O1A—C11A1.317 (3)N2B—H2NB0.88 (4)
O1A—H1OA0.8200C1B—C2B1.393 (4)
O2A—C11A1.235 (3)C1B—C6B1.429 (4)
O3A—N1A1.231 (3)C2B—C3B1.372 (4)
O4A—N1A1.244 (3)C2B—H2BA0.9300
N1A—C1A1.449 (4)C3B—C4B1.403 (4)
N2A—C6A1.348 (4)C3B—C11B1.483 (4)
N2A—C7A1.470 (4)C4B—C5B1.369 (4)
N2A—H2NA0.80 (3)C4B—H4BA0.9300
C1A—C2A1.393 (4)C5B—C6B1.406 (4)
C1A—C6A1.420 (4)C5B—H5BA0.9300
C2A—C3A1.382 (4)C7B—C8B1.509 (5)
C2A—H2AA0.9300C7B—C10B1.511 (6)
C3A—C4A1.408 (4)C7B—H7BA0.9800
C3A—C11A1.464 (4)C8B—C9D1.297 (14)
C4A—C5A1.364 (4)C8B—C9B1.599 (9)
C4A—H4AA0.9300C8B—H8BA0.9601
C5A—C6A1.419 (4)C8B—H8BB0.9600
C5A—H5AA0.9300C8B—H8BC0.9600
C7A—C10A1.524 (4)C8B—H8BD0.9600
C7A—C8A1.525 (4)C8B—H8BE0.9600
C7A—H7AA0.9800C8B—H8BF0.9601
C8A—C9A1.541 (7)C8B—H8BG0.9600
C8A—H8AA0.9601C9B—H8BD0.7494
C8A—H8AB0.9599C9B—H8BG0.6932
C8A—H8AC0.9601C9B—H9BA0.9600
C8A—H8AD0.9599C9B—H9BB0.9600
C8A—H8AE0.9600C9B—H9BC0.9600
C9A—H8AE0.5846C9D—H8BA0.5627
C9A—H9AA0.9600C9D—H8BB1.5624
C9A—H9AB0.9600C9D—H8BE1.4173
C9A—H9AC0.9600C9D—H8BF0.7266
C9C—C10A1.586 (16)C9D—H9DA0.9600
C9C—H9CA0.9600C9D—H9DB0.9600
C9C—H9CB0.9600C9D—H9DC0.9600
C9C—H9CC0.9600C9E—C10B1.408 (9)
C9C—H10B0.7203C9E—H9EA0.9600
C10A—H10A0.9601C9E—H9EB0.9600
C10A—H10B0.9599C9E—H9EC0.9600
C10A—H10C0.9600C9E—H10G0.5739
C10A—H10D0.9601C9E—H10J0.5739
C10A—H10E0.9600C10B—H10F0.9600
O1B—C11B1.283 (4)C10B—H10G0.9599
O1B—H1OB0.8200C10B—H10H0.9599
O2B—C11B1.254 (4)C10B—H10I0.9600
O3B—N1B1.231 (3)C10B—H10J0.9599
O4B—N1B1.242 (3)C10B—H10K0.9599
N1B—C1B1.443 (4)C10B—H10L0.9600
N2B—C6B1.348 (4)C10B—H10M0.9601
N2B—C7B1.472 (4)
C11A—O1A—H1OA109.5C5B—C6B—C1B115.8 (3)
O3A—N1A—O4A121.6 (3)N2B—C7B—C8B107.8 (3)
O3A—N1A—C1A119.0 (2)N2B—C7B—C10B111.7 (3)
O4A—N1A—C1A119.4 (2)C8B—C7B—C10B112.2 (3)
C6A—N2A—C7A126.4 (3)N2B—C7B—H7BA108.4
C6A—N2A—H2NA113 (2)C8B—C7B—H7BA108.4
C7A—N2A—H2NA121 (2)C10B—C7B—H7BA108.4
C2A—C1A—C6A122.2 (3)C9D—C8B—C7B127.5 (7)
C2A—C1A—N1A116.0 (3)C9D—C8B—C9B112.1 (7)
C6A—C1A—N1A121.7 (3)C7B—C8B—C9B109.1 (5)
C3A—C2A—C1A120.8 (3)C7B—C8B—H8BA110.6
C3A—C2A—H2AA119.6C9B—C8B—H8BA110.4
C1A—C2A—H2AA119.6C9D—C8B—H8BB86.3
C2A—C3A—C4A117.8 (3)C7B—C8B—H8BB109.4
C2A—C3A—C11A119.3 (3)C9B—C8B—H8BB109.1
C4A—C3A—C11A122.9 (3)H8BA—C8B—H8BB108.2
C5A—C4A—C3A121.9 (3)C9D—C8B—H8BC107.0
C5A—C4A—H4AA119.1C7B—C8B—H8BC105.3
C3A—C4A—H4AA119.1C9B—C8B—H8BC88.3
C4A—C5A—C6A121.9 (3)H8BA—C8B—H8BC130.2
C4A—C5A—H5AA119.0C9D—C8B—H8BD103.5
C6A—C5A—H5AA119.0C7B—C8B—H8BD105.7
N2A—C6A—C5A120.6 (3)H8BA—C8B—H8BD96.2
N2A—C6A—C1A124.0 (3)H8BB—C8B—H8BD125.8
C5A—C6A—C1A115.4 (3)H8BC—C8B—H8BD106.3
N2A—C7A—C10A111.5 (2)C9D—C8B—H8BE76.2
N2A—C7A—C8A108.3 (3)C7B—C8B—H8BE109.3
C10A—C7A—C8A112.7 (3)C9B—C8B—H8BE119.7
N2A—C7A—H7AA108.1H8BA—C8B—H8BE97.0
C10A—C7A—H7AA108.1H8BD—C8B—H8BE135.1
C8A—C7A—H7AA108.1C7B—C8B—H8BF110.3
C7A—C8A—C9A112.0 (3)C9B—C8B—H8BF98.3
C7A—C8A—H8AA109.2H8BB—C8B—H8BF119.8
C9A—C8A—H8AA108.9H8BC—C8B—H8BF139.1
C7A—C8A—H8AB109.3H8BD—C8B—H8BF83.0
C9A—C8A—H8AB109.3H8BE—C8B—H8BF109.5
H8AA—C8A—H8AB108.0C9D—C8B—H8BG118.4
C7A—C8A—H8AC109.2C7B—C8B—H8BG108.8
C9A—C8A—H8AC108.9H8BA—C8B—H8BG120.8
H8AB—C8A—H8AC108.0H8BB—C8B—H8BG98.1
C7A—C8A—H8AD109.3H8BC—C8B—H8BG76.2
C9A—C8A—H8AD109.3H8BE—C8B—H8BG109.5
H8AA—C8A—H8AD108.0H8BF—C8B—H8BG109.5
H8AC—C8A—H8AD108.0C8B—C9B—H9BA109.5
C7A—C8A—H8AE109.7H8BD—C9B—H9BA107.2
H8AA—C8A—H8AE108.1C8B—C9B—H9BB109.5
H8AB—C8A—H8AE112.5H8BD—C9B—H9BB129.6
H8AC—C8A—H8AE108.1C8B—C9B—H9BC109.5
H8AD—C8A—H8AE112.5H8BD—C9B—H9BC89.1
C8A—C9A—H9AA109.5H8BA—C9D—H8BB78.9
H8AE—C9A—H9AA112.5H8BA—C9D—H8BE80.7
C8A—C9A—H9AB109.5C8B—C9D—H8BF46.9
H8AE—C9A—H9AB111.6H8BB—C9D—H8BF84.7
C8A—C9A—H9AC109.5H8BE—C9D—H8BF87.8
H8AE—C9A—H9AC104.2C8B—C9D—H9DA109.5
C10A—C9C—H9CA109.5C8B—C9D—H9DB109.5
C10A—C9C—H9CB109.5H9DA—C9D—H9DB109.5
H9CA—C9C—H9CB109.5C8B—C9D—H9DC109.5
C10A—C9C—H9CC109.5H9DA—C9D—H9DC109.5
H9CA—C9C—H9CC109.5H9DB—C9D—H9DC109.5
H9CB—C9C—H9CC109.5C10B—C9E—H9EA109.5
H9CA—C9C—H10B107.3C10B—C9E—H9EB109.5
H9CB—C9C—H10B128.6C10B—C9E—H9EC109.5
H9CC—C9C—H10B90.2H9EA—C9E—H10G80.3
C7A—C10A—C9C109.8 (7)H9EB—C9E—H10G130.4
C7A—C10A—H10A109.5H9EC—C9E—H10G112.4
C9C—C10A—H10A122.8H9EA—C9E—H10J80.3
C7A—C10A—H10B109.3H9EB—C9E—H10J130.4
H10A—C10A—H10B109.5H9EC—C9E—H10J112.4
C7A—C10A—H10C109.6C9E—C10B—C7B96.8 (9)
C9C—C10A—H10C94.4C9E—C10B—H10F126.4
H10A—C10A—H10C109.5C7B—C10B—H10F108.6
H10B—C10A—H10C109.5C7B—C10B—H10G109.9
C7A—C10A—H10D109.7H10F—C10B—H10G109.5
C9C—C10A—H10D110.1C9E—C10B—H10H104.5
H10B—C10A—H10D95.6C7B—C10B—H10H109.9
H10C—C10A—H10D122.0H10F—C10B—H10H109.5
C7A—C10A—H10E109.9H10G—C10B—H10H109.5
C9C—C10A—H10E109.1C9E—C10B—H10I126.4
H10A—C10A—H10E94.5C7B—C10B—H10I108.6
H10B—C10A—H10E122.9H10G—C10B—H10I109.5
H10D—C10A—H10E108.2H10H—C10B—H10I109.5
O2A—C11A—O1A122.8 (3)C7B—C10B—H10J109.9
O2A—C11A—C3A122.6 (3)H10F—C10B—H10J109.5
O1A—C11A—C3A114.5 (3)H10H—C10B—H10J109.5
C11B—O1B—H1OB109.5H10I—C10B—H10J109.5
O3B—N1B—O4B121.7 (3)C9E—C10B—H10K104.5
O3B—N1B—C1B119.2 (2)C7B—C10B—H10K109.9
O4B—N1B—C1B119.1 (3)H10F—C10B—H10K109.5
C6B—N2B—C7B125.3 (3)H10G—C10B—H10K109.5
C6B—N2B—H2NB111 (2)H10I—C10B—H10K109.5
C7B—N2B—H2NB123 (2)H10J—C10B—H10K109.5
C2B—C1B—C6B121.4 (3)C9E—C10B—H10L115.1
C2B—C1B—N1B116.7 (3)C7B—C10B—H10L111.1
C6B—C1B—N1B121.9 (3)H10G—C10B—H10L98.5
C3B—C2B—C1B120.5 (3)H10H—C10B—H10L117.3
C3B—C2B—H2BA119.7H10J—C10B—H10L98.5
C1B—C2B—H2BA119.7H10K—C10B—H10L117.3
C2B—C3B—C4B119.3 (3)C9E—C10B—H10M111.4
C2B—C3B—C11B120.1 (3)C7B—C10B—H10M112.3
C4B—C3B—C11B120.6 (3)H10F—C10B—H10M101.5
C5B—C4B—C3B120.5 (3)H10G—C10B—H10M114.7
C5B—C4B—H4BA119.7H10I—C10B—H10M101.5
C3B—C4B—H4BA119.7H10J—C10B—H10M114.7
C4B—C5B—C6B122.4 (3)H10L—C10B—H10M109.6
C4B—C5B—H5BA118.8O2B—C11B—O1B124.0 (3)
C6B—C5B—H5BA118.8O2B—C11B—C3B119.9 (3)
N2B—C6B—C5B120.3 (3)O1B—C11B—C3B116.1 (3)
N2B—C6B—C1B123.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1A—H1OA···O2Ai0.821.832.646 (3)175
O1B—H1OB···O2Bii0.821.802.618 (3)172
N2A—H2NA···O4A0.80 (3)1.97 (3)2.630 (4)139 (3)
N2B—H2NB···O4B0.88 (3)1.90 (3)2.627 (4)139 (3)
C5A—H5AA···O3Aiii0.932.443.316 (4)157
C5B—H5BA···O3Biv0.932.473.253 (4)142

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+2, −y+1, −z+1; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2837).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burgey, C. S., Stump, C. A., Nguyen, D. N., Deng, J. Z., Quigley, A. G., Norton, B. R., Bell, I. M., Mosser, S. D., Salvatore, C. A., Rutledge, R. Z., Kane, S. A., Koblan, K. S., Vacca, J. P., Graham, S. L. & Williams, T. M. (2006). Bioorg. Med. Chem. Lett.16, 5052–5056. [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Ishida, T., Suzuki, T., Hirashima, S., Mizutani, K., Yoshida, A., Ando, I., Ikeda, S., Adachi, T. & Hashimoto, H. (2006). Bioorg. Med. Chem. Lett.16, 1859–1863. [PubMed]
  • Narendra Babu, S. N., Abdul Rahim, A. S., Osman, H., Jebas, S. R. & Fun, H.-K. (2009). Acta Cryst. E65, o1122–o1123. [PMC free article] [PubMed]
  • Semple, G., Skinner, P. J., Cherrier, M. C., Webb, P. J., Sage, C. R., Tamura, S. Y., Chen, R., Richman, J. G. & Connolly, D. T. (2006). J. Med. Chem.49, 1227–1230. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography