PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m789–m790.
Published online 2009 June 17. doi:  10.1107/S1600536809022272
PMCID: PMC2969472

Poly[diethyl­enetriammonium [aquadi-μ2-sulfato-sulfatolanthanum(III)]]

Abstract

In the title compound, {(C4H16N3)[La(SO4)3(H2O)]}n, the La atom adopts an irregular LaO9 coordination geometry, including one bonded water mol­ecule. The three sulfate groups adopt both monodentate and bidentate coordination to the metal ions. Two of the sulfate groups serve as bridges in the (100) and (010) directions, yielding infinite sheets, whereas the third is pendant to one La3+ cation. The protonated organic species inter­acts with the layers by way of N—H(...)O hydrogen bonds, and O–H(...)O hydrogen bonds involving aqua ligands also occur.

Related literature

For related lanthanide sulfate structures, see: Bataille & Louër (2004 [triangle]); Dan et al. (2004 [triangle]); Liu et al. (2005 [triangle]); Rao et al. (2006 [triangle]); Wickleder (2002 [triangle]); Xing et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m789-scheme1.jpg

Experimental

Crystal data

  • (C4H16N3)[La(SO4)3(H2O)]
  • M r = 551.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m789-efi2.jpg
  • a = 6.7128 (13) Å
  • b = 10.442 (2) Å
  • c = 11.103 (2) Å
  • β = 93.94 (3)°
  • V = 776.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.23 mm−1
  • T = 293 K
  • 0.45 × 0.31 × 0.06 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.317, T max = 0.830
  • 7574 measured reflections
  • 3429 independent reflections
  • 3312 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.049
  • S = 1.17
  • 3429 reflections
  • 225 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.61 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1552 Friedel pairs
  • Flack parameter: −0.098 (11)

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2000 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022272/hb2997sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022272/hb2997Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Project is sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (20071108).

supplementary crystallographic information

Comment

Recently, a remarkable plenty of organically templated open-framework rare-earth metal sulfates have been obtained due to sulfate which gives the possibility of high framework dimensionalities and lanthanide with the high coordinated numbers (from 7-fold to 12-fold) according to larger ion diameters of rare-earth elements and in the sequel the complicated topologies (Wickleder, 2002; Rao, et al., 2006). As SO4 group is able to adopt monodentate (S—O—Ln of -140°) and bidentate (S—O—Ln of -100°) to coordinate the lanthanide elements, the lanthanide sulfates are increasingly expanded with regard to the framework structures. Associated with reported two-dimensional lanthanide sulfates - [C2N2H10].[Nd2(SO4)4](Dan, et al., 2004), [C2N2H10].[La2(H2O)4.(SO4)4].2H2O (Xing, et al., 2003), [C6H14N2]2.[La2(H2O)4.(SO4)5].5H2O (Bataille, et al., 2004), [C2N2H10].[Nd2(H2O)2(SO4)6].4H2O (Liu, et al., 2005) and [C6N2H14].[C2N2H10].SO4. [La2(H2O)2.(SO4)6].4H2O (Dan, et al., 2004), (I) keeps the distinct structure in which bridged µ2-SO4 afford one monodentate and one bidentate and grafted SO4 give the bidentate to the La cations.

The asymmetric unit of (I) comprises of twenty-four non-hydrogen atoms, 17 of which belong to the inorganic framework, including one La cation, three SO4 groups, one coordination water and one the organic template (four carbon atoms and three nitrogen atoms), as shown in Fig. 1. The two-dimensional layer of (I) is constructed from LaO9 and SO4 polyhedra. Three crystallographic independent S atoms, which are tetrahedrally coordinated by four O atoms with the S—O distances 1.458 (12) Å to 1.508 (4) Å, can be divided into two modes: S(1) and S(3) consist of three S—O—La linkages and links two La atoms through one bidentate and one monodentate; S(2) makes two S—O—La linkages as a ligand of one La atom through bidentate. The O—S—O angles are within the expected range for tetrahedral geometry. La ion is 9-coordinated by one monodentate and bidentate of µ2-S(1)O4 and µ2-S(3)O4, bidentate of S(2)O4 and one water molecule. The bond distances of La—O vary from 2.445 (4) to 2.617 (25) Å, whereas the angles of O—La—O are between 54.18 (10)° and 149.13 (10)°, which were found in other reported La compounds (Dan, et al., 2004). The bond angles of S—O—La of bidentate coordination range from 99.27 (13)° to 101.15 (16)°, and the S—O—La of monodentate coordination is at 143.04 (13)° and 144.35 (19)°.

As shown in Fig.2, the layer of (I) is accomplished by connect the La by µ2-S(1)O4 along (100) direction and µ2-S(3)O4 along (010) direction. The S(2)O4 do not take part in the formation of layer and graft to the La ions by the bidentate coordination. The protonated H3DETA interact with the layer by the H-bond of N—H···O, which intergrate the Ow—H···O to hold togerther the adjacent layer to the supermolecular network (Fig.3).

Experimental

La(NO3)3.6H2O (0.30 g, 0.7 mmol) was dissolved in 5 ml deionized water under stirring, and then H2SO4 (95%, 0.25 ml, 4.55 mmol) and DETA (0.33 ml, 4 mmol) were added drop-wise to a clear solution with pH = 4.0. After being continuously stirred for 3 h, the solution with the molar ratio of La(NO3)3.6H2O: 6.5H2SO4: 4.3DETA: 397H2O was transferred into a 23-ml autoclave and heated at 438 K for 5 days. After cooling to room temperature, colorless rods of (I) were collected by filtration as a single phase (yield 53% based on the La). The atomic ratio of La:S determined by EDX was 1:3, in consistence with the results of structural determination of (I).

Refinement

Water H atoms were located in a difference Fourier map and were refined with O—H = 0.84 (2) Å, H···H = 1.37 (2) Å and Uiso(H) = 1.2Ueq(O). The remaining H-atoms were placed in calculated positions (C—H = 0.89 Å, N—H = 0.89–0.90 Å) and were included in the refinement as riding with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.
The asymmetric unit of (I), expanded to show the complete metal coordination and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) 1 + x, y, z; (ii) 1 - x, 1/2 + y, -z.]
Fig. 2.
A stick plot of (I), displaying the layer paralleling ab planar formed by link the La with µ2-S(1)O4 and µ2-S(3)O4.
Fig. 3.
The ball-stick packing diagram of (I), viewed along (100) direction. The H-bond of N—H···O and OW—H···O hold together adjacent layer.

Crystal data

(C4H16N3)[La(SO4)3(H2O)]F(000) = 544
Mr = 551.33Dx = 2.358 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2000 reflections
a = 6.7128 (13) Åθ = 3.0–27.5°
b = 10.442 (2) ŵ = 3.23 mm1
c = 11.103 (2) ÅT = 293 K
β = 93.94 (3)°Rod, colourless
V = 776.4 (3) Å30.45 × 0.31 × 0.06 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer3429 independent reflections
Radiation source: fine-focus sealed tube3312 reflections with I > 2σ(I)
graphiteRint = 0.028
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = −8→7
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −13→13
Tmin = 0.317, Tmax = 0.830l = −14→14
7574 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049w = 1/[σ2(Fo2) + (0.0089P)2] where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.006
3429 reflectionsΔρmax = 0.35 e Å3
225 parametersΔρmin = −0.60 e Å3
4 restraintsAbsolute structure: Flack (1983), 1552 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.098 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
La10.53138 (2)0.36394 (2)0.180431 (16)0.00943 (6)
S1−0.00721 (14)0.31013 (9)0.24266 (10)0.0156 (2)
S20.42405 (15)0.58541 (9)0.36244 (10)0.0176 (2)
S30.42773 (14)0.02938 (9)0.06143 (10)0.0167 (2)
O10.4541 (4)0.1705 (3)0.0573 (3)0.0236 (7)
O20.6123 (4)−0.0363 (3)0.0235 (3)0.0234 (7)
O30.4904 (4)0.4531 (3)0.3940 (3)0.0241 (7)
O40.3862 (5)−0.0119 (3)0.1833 (3)0.0287 (7)
O5−0.1328 (4)0.4210 (3)0.2793 (3)0.0226 (6)
O60.4374 (4)0.5935 (3)0.2274 (3)0.0220 (7)
O70.1623 (3)0.3571 (4)0.1758 (2)0.0233 (6)
O8−0.1464 (4)0.2337 (3)0.1610 (3)0.0217 (7)
O90.2667 (4)−0.0115 (3)−0.0290 (3)0.0226 (7)
O100.0654 (5)0.2351 (3)0.3473 (3)0.0333 (8)
O110.5666 (5)0.6790 (3)0.4210 (3)0.0285 (7)
O120.2219 (4)0.6107 (3)0.3958 (3)0.0320 (8)
O1W0.5151 (5)0.1920 (3)0.3288 (3)0.0242 (7)
H1F0.478 (6)0.119 (3)0.303 (4)0.029*
H1G0.554 (7)0.188 (4)0.403 (2)0.029*
N11.0903 (5)0.6434 (3)0.0681 (4)0.0267 (8)
H1A1.16670.66200.00810.032*
H1B0.99600.58810.04220.032*
H1C1.16510.60890.12900.032*
N20.7510 (5)0.8376 (3)0.2587 (4)0.0270 (10)
H2A0.67140.86870.19700.032*
H2B0.67140.80810.31450.032*
N31.0998 (5)1.0100 (3)0.4815 (4)0.0265 (9)
H3A1.18930.98220.53840.032*
H3B0.99831.04640.51590.032*
H3C1.15671.06710.43520.032*
C10.9941 (7)0.7643 (4)0.1105 (5)0.0280 (10)
H1D0.91150.80280.04510.034*
H1E1.09520.82570.13870.034*
C20.8674 (6)0.7262 (4)0.2127 (4)0.0221 (9)
H2C0.77490.65950.18470.027*
H2D0.95320.69150.27860.027*
C30.8728 (7)0.9459 (4)0.3132 (5)0.0293 (11)
H3D0.93840.99000.25000.035*
H3E0.78491.00660.34920.035*
C41.0257 (7)0.9011 (4)0.4067 (5)0.0339 (12)
H4A0.96790.83730.45730.041*
H4B1.13590.86180.36820.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
La10.00845 (8)0.00909 (8)0.01059 (9)−0.00017 (11)−0.00037 (6)−0.00017 (12)
S10.0125 (4)0.0176 (4)0.0165 (5)−0.0001 (4)−0.0004 (4)0.0015 (4)
S20.0180 (5)0.0177 (5)0.0169 (5)−0.0002 (4)0.0002 (4)−0.0024 (4)
S30.0182 (5)0.0156 (4)0.0161 (5)−0.0013 (4)0.0002 (4)−0.0022 (4)
O10.0310 (17)0.0163 (14)0.0238 (18)−0.0007 (13)0.0034 (14)−0.0025 (12)
O20.0223 (16)0.0224 (14)0.0253 (18)0.0088 (12)0.0006 (13)−0.0037 (13)
O30.0279 (17)0.0219 (14)0.0226 (18)0.0050 (13)0.0023 (14)0.0011 (13)
O40.0431 (19)0.0273 (16)0.0161 (18)−0.0080 (15)0.0038 (14)−0.0004 (13)
O50.0148 (14)0.0283 (14)0.0247 (17)0.0027 (13)0.0012 (13)−0.0069 (13)
O60.0255 (16)0.0225 (14)0.0175 (17)0.0009 (13)−0.0028 (13)−0.0019 (12)
O70.0146 (11)0.0317 (14)0.0243 (14)0.0013 (18)0.0053 (10)0.010 (2)
O80.0191 (14)0.0188 (14)0.0268 (18)−0.0017 (12)−0.0004 (13)−0.0053 (12)
O90.0210 (15)0.0258 (15)0.0204 (18)0.0016 (13)−0.0035 (12)−0.0051 (13)
O100.0318 (18)0.0370 (18)0.030 (2)0.0032 (16)−0.0058 (15)0.0145 (15)
O110.0305 (17)0.0313 (16)0.0228 (18)−0.0111 (14)−0.0037 (14)−0.0056 (14)
O120.0224 (15)0.0356 (17)0.039 (2)0.0066 (14)0.0108 (15)−0.0046 (16)
O1W0.0368 (17)0.0208 (15)0.0153 (17)−0.0009 (15)0.0034 (14)0.0021 (13)
N10.0235 (19)0.033 (2)0.024 (2)−0.0013 (17)0.0031 (16)0.0009 (17)
N20.0222 (16)0.027 (3)0.031 (2)0.0017 (15)−0.0033 (15)−0.0011 (16)
N30.030 (2)0.0243 (18)0.024 (2)−0.0041 (17)−0.0034 (17)0.0005 (16)
C10.028 (2)0.026 (2)0.030 (3)−0.0006 (19)0.000 (2)0.004 (2)
C20.023 (2)0.020 (2)0.024 (2)0.0011 (17)0.0016 (18)0.0003 (18)
C30.035 (3)0.0159 (19)0.036 (3)−0.0007 (19)−0.008 (2)−0.0034 (19)
C40.050 (3)0.022 (2)0.028 (3)0.007 (2)−0.011 (2)−0.0010 (18)

Geometric parameters (Å, °)

La1—O1W2.445 (3)N1—C11.508 (6)
La1—O12.474 (3)N1—H1A0.8900
La1—O72.475 (2)N1—H1B0.8900
La1—O5i2.510 (3)N1—H1C0.8900
La1—O62.542 (3)N2—C31.498 (5)
La1—O8i2.577 (3)N2—C21.510 (5)
La1—O32.580 (3)N2—H2A0.9000
La1—O9ii2.583 (3)N2—H2B0.9000
La1—O2ii2.615 (3)N3—C41.474 (5)
S1—O101.457 (3)N3—H3A0.8900
S1—O71.484 (3)N3—H3B0.8900
S1—O81.488 (3)N3—H3C0.8900
S1—O51.504 (3)C1—C21.517 (6)
S2—O121.455 (3)C1—H1D0.9700
S2—O111.486 (3)C1—H1E0.9700
S2—O31.486 (3)C2—H2C0.9700
S2—O61.511 (3)C2—H2D0.9700
S3—O41.465 (3)C3—C41.485 (6)
S3—O11.485 (3)C3—H3D0.9700
S3—O91.486 (3)C3—H3E0.9700
S3—O21.501 (3)C4—H4A0.9700
O1W—H1F0.841 (19)C4—H4B0.9700
O1W—H1G0.850 (18)
O1W—La1—O175.84 (11)S3—O1—La1144.5 (2)
O1W—La1—O784.36 (11)S3—O2—La1iii99.36 (14)
O1—La1—O778.07 (11)S2—O3—La199.67 (16)
O1W—La1—O5i87.70 (11)S1—O5—La1iv101.69 (14)
O1—La1—O5i125.67 (9)S2—O6—La1100.57 (14)
O7—La1—O5i152.06 (10)S1—O7—La1143.12 (17)
O1W—La1—O6122.10 (10)S1—O8—La1iv99.29 (14)
O1—La1—O6146.90 (10)S3—O9—La1iii101.23 (14)
O7—La1—O676.67 (11)La1—O1W—H1F117 (3)
O5i—La1—O685.11 (9)La1—O1W—H1G132 (3)
O1W—La1—O8i75.26 (11)H1F—O1W—H1G110 (3)
O1—La1—O8i70.62 (9)C1—N1—H1A109.5
O7—La1—O8i145.87 (10)C1—N1—H1B109.5
O5i—La1—O8i55.10 (9)H1A—N1—H1B109.5
O6—La1—O8i137.43 (9)C1—N1—H1C109.5
O1W—La1—O368.48 (10)H1A—N1—H1C109.5
O1—La1—O3140.45 (10)H1B—N1—H1C109.5
O7—La1—O381.93 (10)C3—N2—C2115.9 (3)
O5i—La1—O370.24 (10)C3—N2—H2A108.3
O6—La1—O355.07 (9)C2—N2—H2A108.3
O8i—La1—O3114.26 (10)C3—N2—H2B108.3
O1W—La1—O9ii149.15 (10)C2—N2—H2B108.3
O1—La1—O9ii98.68 (10)H2A—N2—H2B107.4
O7—La1—O9ii124.77 (10)C4—N3—H3A109.5
O5i—La1—O9ii70.70 (10)C4—N3—H3B109.5
O6—La1—O9ii78.89 (10)H3A—N3—H3B109.5
O8i—La1—O9ii74.33 (10)C4—N3—H3C109.5
O3—La1—O9ii120.71 (10)H3A—N3—H3C109.5
O1W—La1—O2ii147.69 (10)H3B—N3—H3C109.5
O1—La1—O2ii78.24 (10)N1—C1—C2106.8 (4)
O7—La1—O2ii71.61 (9)N1—C1—H1D110.4
O5i—La1—O2ii123.41 (9)C2—C1—H1D110.4
O6—La1—O2ii73.73 (10)N1—C1—H1E110.4
O8i—La1—O2ii113.54 (10)C2—C1—H1E110.4
O3—La1—O2ii126.54 (10)H1D—C1—H1E108.6
O9ii—La1—O2ii54.16 (9)N2—C2—C1112.4 (3)
O10—S1—O7110.52 (18)N2—C2—H2C109.1
O10—S1—O8111.06 (19)C1—C2—H2C109.1
O7—S1—O8110.06 (18)N2—C2—H2D109.1
O10—S1—O5111.2 (2)C1—C2—H2D109.1
O7—S1—O5110.1 (2)H2C—C2—H2D107.9
O8—S1—O5103.72 (16)C4—C3—N2112.1 (3)
O12—S2—O11110.7 (2)C4—C3—H3D109.2
O12—S2—O3112.23 (19)N2—C3—H3D109.2
O11—S2—O3109.55 (19)C4—C3—H3E109.2
O12—S2—O6111.26 (19)N2—C3—H3E109.2
O11—S2—O6108.49 (18)H3D—C3—H3E107.9
O3—S2—O6104.40 (17)N3—C4—C3109.9 (4)
O4—S3—O1110.57 (18)N3—C4—H4A109.7
O4—S3—O9111.30 (18)C3—C4—H4A109.7
O1—S3—O9110.28 (18)N3—C4—H4B109.7
O4—S3—O2109.77 (19)C3—C4—H4B109.7
O1—S3—O2109.99 (18)H4A—C4—H4B108.2
O9—S3—O2104.78 (17)
O4—S3—O1—La120.4 (4)O11—S2—O6—La1121.73 (16)
O4—S3—O1—La120.4 (4)O3—S2—O6—La14.98 (17)
O9—S3—O1—La1144.0 (3)O1W—La1—O6—S211.55 (19)
O2—S3—O1—La1−101.0 (3)O1—La1—O6—S2127.22 (17)
La1iii—S3—O1—La1−159.2 (2)O7—La1—O6—S286.02 (15)
O1W—La1—O1—S3−4.8 (3)O5i—La1—O6—S2−72.65 (15)
O7—La1—O1—S3−91.9 (3)O8i—La1—O6—S2−92.26 (18)
O5i—La1—O1—S371.8 (3)O3—La1—O6—S2−3.38 (12)
O6—La1—O1—S3−132.8 (3)O9ii—La1—O6—S2−143.91 (15)
O8i—La1—O1—S374.3 (3)O2ii—La1—O6—S2160.44 (16)
O3—La1—O1—S3−30.7 (4)S1i—La1—O6—S2−79.21 (14)
O9ii—La1—O1—S3144.2 (3)S3ii—La1—O6—S2−170.95 (15)
O2ii—La1—O1—S3−165.3 (3)O10—S1—O7—La1−4.0 (4)
S1i—La1—O1—S371.8 (3)O8—S1—O7—La1−127.0 (3)
S2—La1—O1—S3−76.5 (4)O5—S1—O7—La1119.3 (4)
S3ii—La1—O1—S3169.9 (3)La1iv—S1—O7—La1174.6 (2)
O4—S3—O2—La1iii125.92 (15)O1W—La1—O7—S116.6 (4)
O4—S3—O2—La1iii125.92 (15)O1—La1—O7—S193.2 (4)
O1—S3—O2—La1iii−112.21 (16)O5i—La1—O7—S1−57.7 (5)
O9—S3—O2—La1iii6.31 (17)O6—La1—O7—S1−108.3 (4)
O12—S2—O3—La1115.73 (19)O8i—La1—O7—S169.6 (4)
O11—S2—O3—La1−120.90 (17)O3—La1—O7—S1−52.4 (4)
O11—S2—O3—La1−120.90 (17)O9ii—La1—O7—S1−174.4 (3)
O6—S2—O3—La1−4.89 (17)O2ii—La1—O7—S1174.7 (4)
O1W—La1—O3—S2−163.00 (19)S1i—La1—O7—S115.3 (6)
O1—La1—O3—S2−135.94 (15)S2—La1—O7—S1−79.7 (4)
O7—La1—O3—S2−75.91 (16)S3ii—La1—O7—S1−178.3 (4)
O5i—La1—O3—S2101.50 (16)O10—S1—O8—La1iv115.43 (17)
O6—La1—O3—S23.43 (12)O7—S1—O8—La1iv−121.86 (17)
O8i—La1—O3—S2135.54 (13)O5—S1—O8—La1iv−4.05 (18)
O9ii—La1—O3—S249.94 (18)O4—S3—O9—La1iii−125.00 (16)
O2ii—La1—O3—S2−16.0 (2)O4—S3—O9—La1iii−125.00 (16)
S1i—La1—O3—S2119.34 (14)O1—S3—O9—La1iii111.89 (16)
S3ii—La1—O3—S218.23 (18)O2—S3—O9—La1iii−6.43 (18)
O1—S3—O4—O40.00 (18)O12—S2—O11—O110.0 (3)
O9—S3—O4—O40.00 (10)O3—S2—O11—O110.0 (3)
O2—S3—O4—O40.00 (13)O6—S2—O11—O110.0 (4)
La1iii—S3—O4—O40.00 (5)La1—S2—O11—O110.0 (4)
O10—S1—O5—La1iv−115.22 (18)C3—N2—C2—C1−62.8 (5)
O7—S1—O5—La1iv121.94 (14)N1—C1—C2—N2−176.3 (3)
O8—S1—O5—La1iv4.19 (18)C2—N2—C3—C4−51.4 (6)
O12—S2—O6—La1−116.29 (17)N2—C3—C4—N3−163.4 (4)
O11—S2—O6—La1121.73 (16)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y+1/2, −z; (iii) −x+1, y−1/2, −z; (iv) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1F···O40.84 (2)1.98 (2)2.775 (5)157 (4)
O1W—H1G···O11v0.85 (2)2.17 (4)2.872 (5)140 (4)
N1—H1A···O8ii0.892.022.762 (5)141
N1—H1B···O9ii0.892.042.900 (5)161
N1—H1C···O6i0.892.072.874 (5)150
N2—H2B···O110.901.962.798 (5)155
N2—H2A···O2vi0.902.183.015 (5)154
N2—H2A···O4vi0.902.282.981 (5)134
N3—H3A···O5vii0.892.182.809 (5)127
N3—H3A···O3viii0.892.253.051 (5)150
N3—H3B···O12vii0.891.952.834 (5)174
N3—H3C···O10ix0.892.082.784 (5)135

Symmetry codes: (v) −x+1, y−1/2, −z+1; (ii) −x+1, y+1/2, −z; (i) x+1, y, z; (vi) x, y+1, z; (vii) −x+1, y+1/2, −z+1; (viii) −x+2, y+1/2, −z+1; (ix) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2997).

References

  • Bataille, T. & Louër, D. (2004). J. Solid State Chem.177, 1235–1243.
  • Brandenburg, K. (2000). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Dan, M., Behera, J. N. & Rao, C. N. R. (2004). J. Mater. Chem.14, 1257–1265.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Liu, L., Meng, H., Li, G., Cui, Y., Wang, X. & Pang, W. (2005). J. Solid State Chem.178, 1003–1007.
  • Rao, C. N. R., Behera, J. N. & Dan, M. (2006). Chem. Soc. Rev.35, 375–387. [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wickleder, M. S. (2002). Chem. Rev.102, 2011–2087. [PubMed]
  • Xing, Y., Shi, Z., Li, G. & Pang, W. (2003). Dalton Trans. pp. 940–943.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography