PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m822–m823.
Published online 2009 June 27. doi:  10.1107/S1600536809023794
PMCID: PMC2969470

Hexakis(1H-imidazole-κN 3)cobalt(II) triaqua­tris(1H-imidazole-κN 3)cobalt(II) bis­(naphthalene-1,4-dicarboxyl­ate)

Abstract

The asymmetric unit of the title compound, [Co(C3H4N2)6][Co(C3H4N2)3(H2O)3](C12H6O4)2, contains two halves of crystallographically independent CoII complex cations, each assuming a distorted octa­hedral geometry, and one uncoordinated naphthalene-1,4-dicarboxyl­ate dianion. One CoII cation is located on an inversion center and is coordinated by six imidazole mol­ecules, while the other CoII cation is located on a twofold rotation axis and is coordinated by three water and three imidazole mol­ecules. The uncoordinated naphthalene-1,4-dicarboxyl­ate dianion links both CoII complex cations via O—H(...)O and N—H(...)O hydrogen bonding. One imidazole ligand is equally disordered over two sites about a twofold rotation axis, while the coordinated N atom of the imidazole is located on the twofold rotation axis. One water O atom has site symmetry 2.

Related literature

For general background to the nature of π-π stacking, see: Su & Xu (2004 [triangle]); Xu et al. (2007 [triangle]). For related structures, see: Derissen et al. (1979 [triangle]); Li et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m822-scheme1.jpg

Experimental

Crystal data

  • [Co(C3H4N2)6][Co(C3H4N2)3(H2O)3](C12H6O4)2
  • M r = 1212.98
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m822-efi3.jpg
  • a = 29.388 (3) Å
  • b = 9.3275 (11) Å
  • c = 20.475 (2) Å
  • V = 5612.5 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.67 mm−1
  • T = 294 K
  • 0.36 × 0.32 × 0.26 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.735, T max = 0.840
  • 57832 measured reflections
  • 5058 independent reflections
  • 3916 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.100
  • S = 1.07
  • 5058 reflections
  • 367 parameters
  • 5 restraints
  • H-atom parameters constrained
  • Δρmax = 0.82 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023794/hk2715sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023794/hk2715Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title compound incorporating naphthalenedicarboxylate has recently been prepared in the laboratory and its crystal structure is reported here.

The asymmetric unit contains one uncoordinated naphthalenedicarboxylate dianion and two-halves of crystallographically independent CoII complex cations. Both CoII complexes assume distorted octahedral geometry. The Co1 atom is located on an inversion center and coordinated by six imidazole ligands, while the Co2 atom is located on a twofold rotation axis and coordinated by three water molecules and three imidazole ligands (Fig. 1). In the Co2-containing complex cation, the O2W and N9 atoms are located on the twofold rotation axis. The N9-imidazole ring is equally disordered over two sites about the twofold rotation axis, and the N9-imidazole ring is tilted with respect to the twofold axis by an angle of 12.2 (2)°, which is similar to 11.9 (5)° found in the NiII analogue (Li et al. 2008b) and 14.2 (3)° found in the MnII analogue (Li et al., 2008a). The coordination bond distances (Table 1) are significantly shorter than those found in the MnII analogue but longer than those in the NiII analogue.

The uncoordinated naphthalenedicarboxylate dianion links with both CoII complex cations via O—H···O and N—H···O hydrogen bonding (Fig. 1 and Table 2). Two carboxyl groups are twisted with respect to the naphthalene ring system by dihedral angles of 53.6 (3)° and 48.9 (3)°, which are larger than those found in the structure of free naphthalenedicarboxylic acid (ca 40°; Derissen et al., 1979). No π-π stacking is observed between aromatic rings in the crystal structure.

Experimental

A water-ethanol solution (20 ml, 1:2) of naphthalene-1,4-dicarboxyllic acid (0.11 g, 0.5 mmol) and sodium carbonate (0.053 g, 0.5 mmol) was refluxed for 0.5 h, then cobalt chloride hexahydrate (0.12 g, 0.5 mmol) was added to the above solution. The reaction mixture was refluxed for a further 4 h, then imidazole (0.10 g, 1.5 mmol) was added to the above solution and the reaction mixture was refluxed for another 0.5 h. After cooling to room temperature the solution was filtered. The single crystals of the title compound were obtained from the filtrate after one week.

Refinement

The N9-containing imidazole is disordered over two sites about a twofold rotation axis, but the N9 atom is located on the twofold axis. The disordered components were refined with a half site occupancy. In the structure refinement, the coordinates of the N9 atom were refined by introducing an artificial bias of 0.02 (in fraction) to its x and y parameters, after several cycles of refinement the coordinates of the N9 atom shifted to the initial values of (3/4, 3/4, 0.64726). Bond distances of the disordered imidazole were restrained. Water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). One of the disordered imidazole components has been omitted for clarity. Dashed lines indicate hydrogen bonding [symmetry codes: ...

Crystal data

[Co(C3H4N2)6][Co(C3H4N2)3(H2O)3](C12H6O4)2F(000) = 2512
Mr = 1212.98Dx = 1.436 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 5022 reflections
a = 29.388 (3) Åθ = 1.6–25.0°
b = 9.3275 (11) ŵ = 0.67 mm1
c = 20.475 (2) ÅT = 294 K
V = 5612.5 (10) Å3Prism, pink
Z = 40.36 × 0.32 × 0.26 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer5058 independent reflections
Radiation source: fine-focus sealed tube3916 reflections with I > 2σ(I)
graphiteRint = 0.061
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 1.4°
ω scansh = −35→33
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −11→11
Tmin = 0.735, Tmax = 0.840l = −23→24
57832 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0416P)2 + 3.4164P] where P = (Fo2 + 2Fc2)/3
5058 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 0.82 e Å3
5 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Co10.50000.00000.50000.03475 (13)
Co20.75000.75000.54463 (2)0.03692 (14)
N10.53139 (7)0.2076 (2)0.50438 (10)0.0415 (5)
N20.58320 (9)0.3736 (3)0.49130 (13)0.0592 (7)
H2N0.60560.42020.47470.071*
N30.54621 (7)−0.0709 (2)0.57572 (10)0.0408 (5)
N40.58380 (8)−0.2194 (2)0.63945 (11)0.0500 (6)
H4N0.5921−0.29790.65800.060*
N50.45060 (7)0.0639 (2)0.57347 (10)0.0434 (5)
N60.41451 (9)0.0695 (3)0.66759 (12)0.0575 (6)
H6N0.40880.05740.70840.069*
N70.72100 (8)0.9634 (2)0.54290 (11)0.0467 (5)
N80.69494 (9)1.1752 (3)0.57111 (14)0.0601 (7)
H8N0.68661.24560.59550.072*
O10.65890 (7)0.0726 (2)0.13247 (9)0.0575 (5)
O20.60816 (7)−0.02645 (19)0.19969 (9)0.0536 (5)
O30.69702 (9)0.6180 (3)0.35989 (10)0.0910 (9)
O40.65260 (7)0.5131 (2)0.43005 (9)0.0614 (6)
O1W0.68251 (6)0.65158 (18)0.54162 (8)0.0453 (4)
H1A0.67330.61700.50120.068*
H1B0.67720.58880.57080.068*
O2W0.75000.75000.44381 (11)0.0510 (7)
H2A0.73420.69890.41820.077*
C10.56663 (11)0.2500 (3)0.47050 (15)0.0567 (8)
H10.57870.19880.43560.068*
C20.55829 (13)0.4123 (3)0.54329 (19)0.0742 (10)
H20.56240.49330.56910.089*
C30.52607 (12)0.3104 (3)0.55061 (16)0.0646 (9)
H30.50360.31060.58260.078*
C40.55044 (10)−0.2038 (3)0.59620 (13)0.0495 (7)
H40.5321−0.27880.58200.059*
C50.60213 (11)−0.0882 (3)0.64854 (17)0.0675 (9)
H50.6260−0.06480.67650.081*
C60.57913 (11)0.0025 (3)0.60917 (16)0.0602 (8)
H60.58480.10030.60530.072*
C70.45256 (10)0.0328 (3)0.63626 (13)0.0499 (7)
H70.4775−0.00980.65630.060*
C80.38665 (12)0.1295 (4)0.62264 (17)0.0712 (9)
H80.35770.16650.63000.085*
C90.40880 (11)0.1255 (4)0.56533 (16)0.0639 (9)
H90.39740.15950.52590.077*
C100.71170 (11)1.0496 (3)0.59131 (16)0.0599 (8)
H100.71621.02630.63500.072*
C110.69356 (13)1.1707 (4)0.50581 (19)0.0776 (11)
H110.68361.24290.47790.093*
C120.70948 (13)1.0405 (4)0.48858 (17)0.0750 (10)
H120.71221.00780.44590.090*
C200.65783 (9)0.4146 (3)0.32301 (12)0.0404 (6)
C210.69252 (10)0.3443 (3)0.29285 (14)0.0558 (8)
H210.72240.36830.30320.067*
C220.68432 (10)0.2362 (3)0.24652 (14)0.0535 (7)
H220.70880.19050.22670.064*
C230.64097 (9)0.1970 (3)0.23010 (12)0.0391 (6)
C240.60349 (8)0.2713 (2)0.25851 (11)0.0358 (6)
C250.55755 (9)0.2425 (3)0.24077 (13)0.0446 (6)
H250.55140.17010.21080.054*
C260.52253 (10)0.3182 (3)0.26665 (14)0.0539 (7)
H260.49280.29560.25510.065*
C270.53077 (10)0.4302 (3)0.31069 (14)0.0559 (8)
H270.50660.48310.32720.067*
C280.57421 (10)0.4620 (3)0.32946 (13)0.0463 (7)
H280.57920.53660.35870.056*
C290.61191 (8)0.3829 (2)0.30492 (11)0.0368 (6)
C300.66975 (10)0.5234 (3)0.37521 (13)0.0467 (7)
C310.63550 (9)0.0723 (3)0.18330 (13)0.0425 (6)
N90.75000.75000.64726 (14)0.0532 (6)
N100.76923 (15)0.7145 (5)0.74775 (19)0.0532 (6)0.50
H10A0.78580.71240.78230.064*0.50
C130.78454 (12)0.7510 (6)0.68841 (17)0.0532 (6)0.50
H130.81450.77330.67800.064*0.50
C140.72418 (16)0.6813 (6)0.7466 (2)0.0532 (6)0.50
H140.70560.65120.78060.064*0.50
C150.71334 (12)0.7034 (6)0.68278 (19)0.0532 (6)0.50
H150.68450.68850.66530.064*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0411 (3)0.0299 (2)0.0333 (2)0.0009 (2)0.0015 (2)0.00306 (19)
Co20.0484 (3)0.0339 (2)0.0285 (2)−0.0068 (2)0.0000.000
N10.0466 (13)0.0354 (11)0.0424 (12)−0.0041 (10)−0.0008 (10)0.0050 (9)
N20.0621 (16)0.0473 (14)0.0682 (17)−0.0199 (12)−0.0011 (13)0.0039 (12)
N30.0471 (13)0.0333 (11)0.0422 (12)0.0041 (10)−0.0022 (10)0.0034 (9)
N40.0532 (14)0.0460 (13)0.0508 (14)0.0101 (11)−0.0043 (11)0.0111 (11)
N50.0484 (14)0.0390 (11)0.0427 (13)0.0013 (10)0.0074 (10)0.0017 (10)
N60.0685 (17)0.0586 (15)0.0454 (14)−0.0035 (13)0.0166 (13)−0.0064 (12)
N70.0523 (14)0.0396 (12)0.0482 (13)−0.0011 (10)−0.0006 (11)0.0016 (10)
N80.0638 (17)0.0409 (13)0.0755 (18)0.0044 (12)0.0103 (14)−0.0018 (13)
O10.0802 (15)0.0484 (11)0.0438 (11)−0.0076 (10)0.0182 (10)−0.0122 (9)
O20.0706 (14)0.0447 (11)0.0454 (11)−0.0173 (10)0.0079 (10)−0.0124 (9)
O30.127 (2)0.1031 (18)0.0424 (12)−0.0803 (17)0.0085 (13)−0.0151 (12)
O40.0803 (15)0.0672 (13)0.0368 (11)−0.0317 (11)0.0084 (10)−0.0135 (9)
O1W0.0565 (11)0.0440 (10)0.0355 (9)−0.0124 (8)0.0019 (8)0.0015 (8)
O2W0.0704 (18)0.0545 (15)0.0282 (13)−0.0297 (14)0.0000.000
C10.067 (2)0.0487 (16)0.0548 (18)−0.0153 (15)0.0080 (15)−0.0052 (14)
C20.086 (3)0.0440 (18)0.093 (3)−0.0116 (17)0.006 (2)−0.0203 (17)
C30.071 (2)0.0473 (16)0.075 (2)−0.0077 (16)0.0161 (17)−0.0168 (16)
C40.0554 (18)0.0394 (14)0.0536 (17)−0.0004 (12)−0.0081 (14)0.0074 (12)
C50.069 (2)0.0526 (18)0.081 (2)0.0016 (16)−0.0325 (18)0.0018 (17)
C60.064 (2)0.0392 (15)0.078 (2)0.0010 (14)−0.0231 (17)0.0040 (15)
C70.0530 (17)0.0553 (16)0.0414 (16)−0.0005 (13)0.0080 (13)−0.0039 (13)
C80.061 (2)0.078 (2)0.074 (2)0.0181 (18)0.0243 (19)0.0008 (19)
C90.061 (2)0.072 (2)0.0585 (19)0.0217 (17)0.0084 (15)0.0112 (16)
C100.083 (2)0.0414 (15)0.0557 (19)0.0021 (15)0.0067 (16)0.0006 (14)
C110.093 (3)0.060 (2)0.080 (3)0.0272 (19)−0.006 (2)0.0116 (18)
C120.104 (3)0.064 (2)0.057 (2)0.025 (2)−0.0131 (19)0.0038 (16)
C200.0455 (16)0.0407 (14)0.0350 (13)−0.0095 (12)0.0003 (11)−0.0058 (11)
C210.0394 (16)0.070 (2)0.0583 (18)−0.0134 (14)−0.0011 (14)−0.0199 (15)
C220.0403 (16)0.0631 (18)0.0572 (18)−0.0031 (14)0.0063 (13)−0.0204 (15)
C230.0419 (15)0.0399 (13)0.0354 (13)−0.0045 (11)0.0004 (11)−0.0069 (11)
C240.0392 (14)0.0375 (13)0.0306 (12)−0.0033 (11)−0.0030 (10)0.0008 (10)
C250.0427 (16)0.0503 (15)0.0409 (14)−0.0045 (13)−0.0054 (12)−0.0050 (12)
C260.0368 (16)0.0713 (19)0.0536 (17)0.0014 (14)−0.0097 (13)0.0009 (16)
C270.0486 (18)0.0635 (19)0.0557 (18)0.0180 (15)−0.0016 (14)−0.0019 (15)
C280.0566 (18)0.0408 (14)0.0416 (15)0.0073 (13)−0.0019 (13)−0.0067 (12)
C290.0443 (15)0.0342 (12)0.0318 (13)−0.0026 (11)−0.0011 (11)−0.0024 (10)
C300.0586 (18)0.0444 (15)0.0373 (15)−0.0163 (13)−0.0036 (13)−0.0058 (12)
C310.0500 (16)0.0382 (14)0.0394 (15)−0.0008 (12)−0.0014 (12)−0.0079 (11)
N90.0688 (13)0.0549 (14)0.0359 (9)0.0052 (12)0.0000.000
N100.0688 (13)0.0549 (14)0.0359 (9)0.0052 (12)0.0000.000
C130.0688 (13)0.0549 (14)0.0359 (9)0.0052 (12)0.0000.000
C140.0688 (13)0.0549 (14)0.0359 (9)0.0052 (12)0.0000.000
C150.0688 (13)0.0549 (14)0.0359 (9)0.0052 (12)0.0000.000

Geometric parameters (Å, °)

Co1—N12.146 (2)C4—H40.9300
Co1—N1i2.146 (2)C5—C61.350 (4)
Co1—N32.165 (2)C5—H50.9300
Co1—N3i2.165 (2)C6—H60.9300
Co1—N52.174 (2)C7—H70.9300
Co1—N5i2.174 (2)C8—C91.342 (4)
Co2—O1Wii2.1864 (17)C8—H80.9300
Co2—O1W2.1864 (17)C9—H90.9300
Co2—O2W2.064 (2)C10—H100.9300
Co2—N7ii2.166 (2)C11—C121.348 (5)
Co2—N72.166 (2)C11—H110.9300
Co2—N92.101 (3)C12—H120.9300
N1—C11.308 (3)C20—C211.361 (4)
N1—C31.356 (4)C20—C291.430 (3)
N2—C11.322 (4)C20—C301.515 (3)
N2—C21.341 (4)C21—C221.405 (4)
N2—H2N0.8600C21—H210.9300
N3—C41.314 (3)C22—C231.368 (4)
N3—C61.369 (4)C22—H220.9300
N4—C41.329 (3)C23—C241.426 (3)
N4—C51.350 (4)C23—C311.515 (3)
N4—H4N0.8600C24—C251.424 (4)
N5—C71.319 (3)C24—C291.431 (3)
N5—C91.366 (4)C25—C261.356 (4)
N6—C71.334 (4)C25—H250.9300
N6—C81.353 (4)C26—C271.401 (4)
N6—H6N0.8600C26—H260.9300
N7—C101.305 (4)C27—C281.366 (4)
N7—C121.367 (4)C27—H270.9300
N8—C101.336 (4)C28—C291.423 (4)
N8—C111.338 (4)C28—H280.9300
N8—H8N0.8600N9—C131.3190 (10)
O1—C311.248 (3)N9—C13ii1.3190 (10)
O2—C311.268 (3)N9—C15ii1.3706 (10)
O3—C301.232 (3)N9—C151.3706 (10)
O4—C301.234 (3)N10—C131.3395 (10)
O1W—H1A0.9287N10—C141.3598 (10)
O1W—H1B0.8504N10—H10A0.8600
O2W—H2A0.8475C13—H130.9300
C1—H10.9300C14—C151.3597 (10)
C2—C31.350 (4)C14—H140.9300
C2—H20.9300C15—H150.9300
C3—H30.9300
N1—Co1—N1i180.00 (10)N5—C7—N6112.0 (3)
N1—Co1—N388.64 (8)N5—C7—H7124.0
N1i—Co1—N391.36 (8)N6—C7—H7124.0
N1—Co1—N3i91.36 (8)C9—C8—N6106.8 (3)
N1i—Co1—N3i88.64 (8)C9—C8—H8126.6
N3—Co1—N3i180.00 (12)N6—C8—H8126.6
N1—Co1—N590.61 (8)C8—C9—N5110.0 (3)
N1i—Co1—N589.39 (8)C8—C9—H9125.0
N3—Co1—N590.41 (8)N5—C9—H9125.0
N3i—Co1—N589.59 (8)N7—C10—N8112.5 (3)
N1—Co1—N5i89.38 (8)N7—C10—H10123.8
N1i—Co1—N5i90.62 (8)N8—C10—H10123.8
N3—Co1—N5i89.59 (8)N8—C11—C12106.2 (3)
N3i—Co1—N5i90.41 (8)N8—C11—H11126.9
N5—Co1—N5i180.00 (8)C12—C11—H11126.9
O2W—Co2—N9180.000 (1)C11—C12—N7110.3 (3)
O2W—Co2—N7ii89.06 (6)C11—C12—H12124.9
N9—Co2—N7ii90.94 (6)N7—C12—H12124.8
O2W—Co2—N789.06 (6)C21—C20—C29119.3 (2)
N9—Co2—N790.94 (6)C21—C20—C30118.0 (2)
N7ii—Co2—N7178.12 (12)C29—C20—C30122.7 (2)
O2W—Co2—O1Wii88.38 (4)C20—C21—C22121.6 (3)
N9—Co2—O1Wii91.62 (4)C20—C21—H21119.2
N7ii—Co2—O1Wii91.63 (8)C22—C21—H21119.2
N7—Co2—O1Wii88.32 (8)C23—C22—C21121.2 (3)
O2W—Co2—O1W88.38 (4)C23—C22—H22119.4
N9—Co2—O1W91.62 (4)C21—C22—H22119.4
N7ii—Co2—O1W88.32 (8)C22—C23—C24119.3 (2)
N7—Co2—O1W91.63 (8)C22—C23—C31117.4 (2)
O1Wii—Co2—O1W176.77 (9)C24—C23—C31123.3 (2)
C1—N1—C3104.3 (2)C25—C24—C23122.4 (2)
C1—N1—Co1126.23 (19)C25—C24—C29118.1 (2)
C3—N1—Co1128.12 (19)C23—C24—C29119.4 (2)
C1—N2—C2106.8 (3)C26—C25—C24121.4 (2)
C1—N2—H2N126.6C26—C25—H25119.3
C2—N2—H2N126.6C24—C25—H25119.3
C4—N3—C6104.2 (2)C25—C26—C27120.6 (3)
C4—N3—Co1125.18 (18)C25—C26—H26119.7
C6—N3—Co1130.43 (17)C27—C26—H26119.7
C4—N4—C5106.7 (2)C28—C27—C26120.3 (3)
C4—N4—H4N126.7C28—C27—H27119.8
C5—N4—H4N126.7C26—C27—H27119.8
C7—N5—C9104.5 (2)C27—C28—C29121.0 (2)
C7—N5—Co1125.79 (19)C27—C28—H28119.5
C9—N5—Co1129.15 (19)C29—C28—H28119.5
C7—N6—C8106.6 (3)C28—C29—C20122.4 (2)
C7—N6—H6N126.7C28—C29—C24118.5 (2)
C8—N6—H6N126.7C20—C29—C24119.1 (2)
C10—N7—C12104.0 (3)O3—C30—O4123.6 (2)
C10—N7—Co2129.5 (2)O3—C30—C20116.8 (2)
C12—N7—Co2126.5 (2)O4—C30—C20119.7 (2)
C10—N8—C11107.0 (3)O1—C31—O2124.8 (2)
C10—N8—H8N126.5O1—C31—C23117.9 (2)
C11—N8—H8N126.5O2—C31—C23117.2 (2)
Co2—O1W—H1A115.7C13—N9—C13ii100.6 (4)
Co2—O1W—H1B115.8C13ii—N9—C15ii105.6 (3)
H1A—O1W—H1B109.5C13—N9—C15105.6 (3)
Co2—O2W—H2A128.3C15ii—N9—C15115.9 (5)
N1—C1—N2112.6 (3)C13—N9—Co2129.7 (2)
N1—C1—H1123.7C13ii—N9—Co2129.7 (2)
N2—C1—H1123.7C15ii—N9—Co2122.0 (2)
N2—C2—C3106.3 (3)C15—N9—Co2122.0 (2)
N2—C2—H2126.8C13—N10—C14111.6 (4)
C3—C2—H2126.8C13—N10—H10A124.2
C2—C3—N1109.9 (3)C14—N10—H10A124.2
C2—C3—H3125.1N9—C13—N10108.6 (4)
N1—C3—H3125.1N9—C13—H13125.7
N3—C4—N4112.7 (3)N10—C13—H13125.7
N3—C4—H4123.7C15—C14—N10102.2 (4)
N4—C4—H4123.7C15—C14—C14ii94.7 (3)
C6—C5—N4106.6 (3)C15—C14—H14128.9
C6—C5—H5126.7N10—C14—H14128.9
N4—C5—H5126.7C14ii—C14—H14130.1
C5—C6—N3109.8 (3)C14—C15—N9111.9 (4)
C5—C6—H6125.1C14—C15—H15124.0
N3—C6—H6125.1N9—C15—H15124.0

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+3/2, −y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1A···O40.931.852.768 (3)168
O1W—H1B···O1iii0.852.042.883 (3)173
O2W—H2A···O30.851.792.625 (3)171
N2—H2N···O40.861.872.725 (3)174
N4—H4N···O2iv0.861.912.766 (3)178
N6—H6N···O2i0.861.972.827 (3)176
N8—H8N···O1v0.862.032.869 (3)166
N10—H10A···O3vi0.861.892.658 (5)149

Symmetry codes: (iii) x, −y+1/2, z+1/2; (iv) x, −y−1/2, z+1/2; (i) −x+1, −y, −z+1; (v) x, −y+3/2, z+1/2; (vi) −x+3/2, y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2715).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Derissen, J. L., Timmermans, C. & Schoone, J. C. (1979). Cryst. Struct. Commun.8, 533–536.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, J.-H., Nie, J.-J. & Xu, D.-J. (2008a). Acta Cryst. E64, m729. [PMC free article] [PubMed]
  • Li, J.-H., Nie, J.-J. & Xu, D.-J. (2008b). Acta Cryst. E64, m1108–m1109. [PMC free article] [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem 57, 223–229.
  • Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography