PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1468.
Published online 2009 June 6. doi:  10.1107/S1600536809020285
PMCID: PMC2969466

4-Methyl-3-(2-phenoxy­acet­yl)-5-phenyl-1,3,4-oxadiazinan-2-one

Abstract

The 1,3,4-oxadiazinane ring in the title compound, C18H18N2O4, is in a twisted boat conformation. The two carbonyl groups are orientated towards the same side of the mol­ecule. The dihedral angle between the planes of the benzene rings is 76.6 (3)°. Mol­ecules are sustained in the three-dimensional structure by a combination of C—H(...)O, C—H(...)π and π–π [shortest centroid–centroid distance = 3.672 (6) Å] inter­actions.

Related literature

For synthetic and structural studies of substituted heterocyclic rings, see: Rodrigues et al. (2006 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]); Iulek & Zukerman-Schpector (1997 [triangle]). For the synthesis, see: Rodrigues et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1468-scheme1.jpg

Experimental

Crystal data

  • C18H18N2O4
  • M r = 326.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1468-efi1.jpg
  • a = 9.6024 (9) Å
  • b = 9.4203 (10) Å
  • c = 19.275 (3) Å
  • β = 114.206 (9)°
  • V = 1590.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 290 K
  • 0.15 × 0.10 × 0.08 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 2971 measured reflections
  • 2793 independent reflections
  • 1355 reflections with I > 2σ(I)
  • R int = 0.030
  • 3 standard reflections frequency: 60 min intensity decay: <1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.246
  • S = 1.12
  • 2793 reflections
  • 218 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]), PARST (Nardelli, 1995 [triangle]) and MarvinSketch (ChemAxon, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020285/tk2466sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020285/tk2466Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank FAPESP (2008/02531–5 to JZ—S; 2003/05520–0 to AR), CNPq and CAPES for financial support.

supplementary crystallographic information

Comment

In continuation of synthetic and structural studies of substituted heterocyclic rings (Rodrigues et al., 2006), the title compound (I) was prepared. The 1,3,4-oxadiazinane ring in (I), Fig. 1, is in a distorted twist boat conformation with the distortion being towards a boat conformation. The ring-puckering parameters (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997) were calculated as q2 = 0.119 (6) Å, q3 = -0.496 (6) Å, Q = 0.510 (6) Å, and [var phi]2 = -108 (3)°. The ring- and side-chain-bound carbonyl groups lie to the same side of the molecule. The dihedral angle between the phenyl rings is of 76.6 (3)°. Molecules are sustained in the 3-D structure by a combination of C-H···O and π–π interactions, Table 1.

Experimental

The starting (R)-4-methyl-5-phenyl-1,3,4-oxadiazinan-2-one was synthesized by using a previously reported procedure (Rodrigues et al. 2005). The phenoxyacetyl-1,3,4-oxadiazinan-2-one derivative was prepared by an acylation reaction of 1,3,4-oxadiazinan-2-one (Rodrigues et al. 2005). To a mixture of 1,3,4-oxadiazinan-2-one (500 mg, 2.60 mmol), 4-dimethylaminopyridine (16 mg, 0.13 mmol) and 2-phenoxyacetic acid (435 mg, 2.86 mmol) in CH2Cl2 (4 ml) at 273 K, under a nitrogen atmosphere, N,N-Dicyclohexylcarbodiimide was added in one portion (590 mg, 2.86 mmol). The temperature of the resulting suspension was allowed to reach room temperature. Stirring was continued until no starting material was left, as confirmed by TLC (20 h). The dicyclohexylurea formed was filtered and the precipitate washed with CH2Cl2 (20 ml). The filtrate was washed with a saturated aqueous solution of NaHCO3 (15 ml) and dried over Na2SO4. Filtration and evaporation yielded the crude solid, which was purified by flash chromatography on silica gel (hexane-EtOAc, 6:4). Colourless crystals of (I) were obtained by vapour diffusion from hexane/chloroform at 298 K.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.98 Å, and with Uiso set to 1.2 times (1.5 for methyl) Ueq(parent atom).

Figures

Fig. 1.
The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).

Crystal data

C18H18N2O4F(000) = 688
Mr = 326.34Dx = 1.363 Mg m3
Monoclinic, P21/cMelting point = 385–387 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.6024 (9) ÅCell parameters from 24 reflections
b = 9.4203 (10) Åθ = 10.5–15.1°
c = 19.275 (3) ŵ = 0.10 mm1
β = 114.206 (9)°T = 290 K
V = 1590.3 (4) Å3Irregular, colourless
Z = 40.15 × 0.10 × 0.08 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.030
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.3°
graphiteh = −11→0
ω–2θ scansk = 0→11
2971 measured reflectionsl = −20→20
2793 independent reflections3 standard reflections every 60 min
1355 reflections with I > 2σ(I) intensity decay: <1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.246H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.0852P)2 + 2.8996P] where P = (Fo2 + 2Fc2)/3
2793 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6770 (6)0.3140 (6)−0.0050 (3)0.0504 (14)
H10.61770.3840−0.04330.060*
C20.5715 (6)0.1861 (6)−0.0126 (4)0.0676 (18)
H2A0.51230.20400.01690.081*
H2B0.50080.1758−0.06550.081*
C30.8059 (6)0.0406 (6)0.0376 (3)0.0530 (14)
C41.0422 (5)0.1778 (6)0.0667 (3)0.0411 (12)
C51.0994 (5)0.3123 (6)0.0478 (3)0.0492 (13)
H5A1.07560.3145−0.00620.059*
H5B1.04870.39210.05930.059*
C60.7359 (5)0.3870 (6)0.0714 (3)0.0419 (12)
C70.7468 (6)0.5357 (6)0.0737 (3)0.0550 (14)
H70.71550.58620.02840.066*
C80.8025 (8)0.6080 (7)0.1415 (4)0.0690 (18)
H80.80550.70670.14160.083*
C90.8541 (7)0.5350 (9)0.2091 (4)0.0735 (19)
H90.89560.58370.25510.088*
C100.8439 (7)0.3903 (8)0.2083 (3)0.0643 (17)
H100.87690.34070.25390.077*
C110.7850 (6)0.3167 (7)0.1400 (3)0.0596 (16)
H110.77840.21820.14050.071*
C121.3081 (6)0.3918 (6)0.1593 (3)0.0452 (12)
C131.4569 (5)0.4434 (6)0.1878 (3)0.0498 (14)
H131.51740.42930.16120.060*
C180.7580 (7)0.2267 (6)−0.1031 (3)0.0593 (16)
H18A0.84700.2022−0.11140.089*
H18B0.70580.3041−0.13580.089*
H18C0.69120.1461−0.11410.089*
C141.5132 (6)0.5148 (6)0.2553 (3)0.0573 (15)
H141.61200.55080.27390.069*
C151.4279 (7)0.5343 (7)0.2958 (3)0.0640 (17)
H151.46680.58490.34120.077*
C161.2833 (7)0.4782 (7)0.2689 (3)0.0650 (16)
H161.22560.48780.29730.078*
C171.2231 (6)0.4082 (6)0.2007 (3)0.0544 (14)
H171.12440.37190.18260.065*
N10.8837 (4)0.1580 (4)0.0262 (2)0.0420 (10)
N20.8042 (4)0.2689 (4)−0.0233 (2)0.0383 (10)
O10.6553 (4)0.0565 (4)0.0129 (3)0.0744 (13)
O20.8648 (5)−0.0680 (4)0.0671 (3)0.0712 (12)
O31.1208 (4)0.0946 (4)0.1131 (2)0.0611 (11)
O41.2593 (4)0.3245 (4)0.0898 (2)0.0569 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.041 (3)0.043 (3)0.057 (3)0.004 (2)0.010 (2)0.003 (3)
C20.041 (3)0.054 (4)0.098 (5)−0.001 (3)0.019 (3)0.001 (3)
C30.046 (3)0.046 (3)0.066 (4)−0.001 (3)0.022 (3)0.003 (3)
C40.041 (3)0.044 (3)0.035 (3)0.009 (2)0.012 (2)0.000 (2)
C50.036 (3)0.063 (4)0.044 (3)−0.001 (3)0.012 (2)0.000 (3)
C60.037 (3)0.044 (3)0.049 (3)0.005 (2)0.022 (2)0.004 (3)
C70.062 (4)0.051 (3)0.057 (3)0.001 (3)0.029 (3)0.003 (3)
C80.089 (5)0.056 (4)0.073 (4)−0.013 (4)0.045 (4)−0.018 (4)
C90.066 (4)0.100 (6)0.063 (4)−0.003 (4)0.035 (3)−0.020 (4)
C100.067 (4)0.082 (5)0.053 (4)0.019 (4)0.034 (3)0.014 (4)
C110.058 (4)0.058 (4)0.070 (4)0.005 (3)0.034 (3)0.011 (3)
C120.040 (3)0.046 (3)0.047 (3)0.005 (2)0.016 (2)0.001 (3)
C130.034 (3)0.057 (3)0.054 (3)0.003 (3)0.014 (2)0.004 (3)
C180.059 (3)0.057 (4)0.046 (3)0.007 (3)0.005 (3)−0.004 (3)
C140.039 (3)0.062 (4)0.058 (3)−0.003 (3)0.007 (3)0.005 (3)
C150.063 (4)0.066 (4)0.053 (3)0.002 (3)0.014 (3)−0.016 (3)
C160.068 (4)0.066 (4)0.068 (4)−0.001 (3)0.035 (3)−0.015 (3)
C170.046 (3)0.053 (3)0.065 (4)−0.013 (3)0.024 (3)−0.016 (3)
N10.038 (2)0.038 (2)0.048 (2)0.0001 (19)0.0159 (19)0.006 (2)
N20.036 (2)0.041 (2)0.035 (2)0.0063 (18)0.0121 (17)0.0054 (18)
O10.047 (2)0.046 (2)0.125 (4)−0.0046 (19)0.030 (2)0.012 (2)
O20.078 (3)0.040 (2)0.099 (3)0.008 (2)0.040 (2)0.024 (2)
O30.054 (2)0.056 (2)0.058 (2)0.009 (2)0.0075 (18)0.009 (2)
O40.0379 (19)0.080 (3)0.050 (2)−0.0048 (19)0.0159 (16)−0.015 (2)

Geometric parameters (Å, °)

C1—N21.466 (6)C9—C101.366 (9)
C1—C61.511 (7)C9—H90.9300
C1—C21.542 (8)C10—C111.386 (8)
C1—H10.9800C10—H100.9300
C2—O11.433 (7)C11—H110.9300
C2—H2A0.9700C12—C171.365 (7)
C2—H2B0.9700C12—O41.378 (6)
C3—O21.194 (6)C12—C131.391 (7)
C3—O11.332 (6)C13—C141.364 (8)
C3—N11.402 (7)C13—H130.9300
C4—O31.195 (6)C18—N21.469 (6)
C4—N11.410 (6)C18—H18A0.9600
C4—C51.484 (7)C18—H18B0.9600
C5—O41.417 (6)C18—H18C0.9600
C5—H5A0.9700C14—C151.355 (9)
C5—H5B0.9700C14—H140.9300
C6—C111.378 (7)C15—C161.373 (8)
C6—C71.404 (8)C15—H150.9300
C7—C81.372 (8)C16—C171.369 (7)
C7—H70.9300C16—H160.9300
C8—C91.374 (9)C17—H170.9300
C8—H80.9300N1—N21.410 (5)
N2—C1—C6110.6 (4)C9—C10—H10119.7
N2—C1—C2109.3 (4)C11—C10—H10119.7
C6—C1—C2114.7 (5)C6—C11—C10121.1 (6)
N2—C1—H1107.3C6—C11—H11119.5
C6—C1—H1107.3C10—C11—H11119.5
C2—C1—H1107.3C17—C12—O4125.0 (5)
O1—C2—C1112.2 (4)C17—C12—C13119.5 (5)
O1—C2—H2A109.2O4—C12—C13115.5 (5)
C1—C2—H2A109.2C14—C13—C12119.4 (5)
O1—C2—H2B109.2C14—C13—H13120.3
C1—C2—H2B109.2C12—C13—H13120.3
H2A—C2—H2B107.9N2—C18—H18A109.5
O2—C3—O1119.9 (5)N2—C18—H18B109.5
O2—C3—N1124.9 (5)H18A—C18—H18B109.5
O1—C3—N1115.2 (5)N2—C18—H18C109.5
O3—C4—N1122.3 (5)H18A—C18—H18C109.5
O3—C4—C5124.0 (5)H18B—C18—H18C109.5
N1—C4—C5113.6 (4)C15—C14—C13121.3 (5)
O4—C5—C4110.6 (4)C15—C14—H14119.4
O4—C5—H5A109.5C13—C14—H14119.4
C4—C5—H5A109.5C14—C15—C16119.1 (5)
O4—C5—H5B109.5C14—C15—H15120.5
C4—C5—H5B109.5C16—C15—H15120.5
H5A—C5—H5B108.1C17—C16—C15120.8 (6)
C11—C6—C7117.3 (5)C17—C16—H16119.6
C11—C6—C1124.1 (5)C15—C16—H16119.6
C7—C6—C1118.6 (5)C12—C17—C16119.8 (5)
C8—C7—C6121.4 (6)C12—C17—H17120.1
C8—C7—H7119.3C16—C17—H17120.1
C6—C7—H7119.3C3—N1—N2121.0 (4)
C7—C8—C9120.2 (6)C3—N1—C4122.8 (4)
C7—C8—H8119.9N2—N1—C4116.0 (4)
C9—C8—H8119.9N1—N2—C1109.0 (4)
C10—C9—C8119.5 (6)N1—N2—C18110.8 (4)
C10—C9—H9120.3C1—N2—C18114.0 (4)
C8—C9—H9120.3C3—O1—C2126.3 (4)
C9—C10—C11120.6 (6)C12—O4—C5116.7 (4)
N2—C1—C2—O137.4 (7)C15—C16—C17—C121.0 (10)
C6—C1—C2—O1−87.4 (6)O2—C3—N1—N2165.9 (5)
O3—C4—C5—O42.4 (7)O1—C3—N1—N2−14.2 (7)
N1—C4—C5—O4−179.3 (4)O2—C3—N1—C4−18.8 (9)
N2—C1—C6—C11−82.9 (6)O1—C3—N1—C4161.1 (5)
C2—C1—C6—C1141.2 (7)O3—C4—N1—C30.8 (8)
N2—C1—C6—C794.9 (6)C5—C4—N1—C3−177.6 (5)
C2—C1—C6—C7−141.0 (5)O3—C4—N1—N2176.3 (4)
C11—C6—C7—C8−0.6 (8)C5—C4—N1—N2−2.0 (6)
C1—C6—C7—C8−178.5 (5)C3—N1—N2—C149.4 (6)
C6—C7—C8—C92.2 (9)C4—N1—N2—C1−126.2 (4)
C7—C8—C9—C10−2.5 (10)C3—N1—N2—C18−76.8 (6)
C8—C9—C10—C111.2 (10)C4—N1—N2—C18107.6 (5)
C7—C6—C11—C10−0.6 (8)C6—C1—N2—N168.9 (5)
C1—C6—C11—C10177.1 (5)C2—C1—N2—N1−58.2 (5)
C9—C10—C11—C60.3 (9)C6—C1—N2—C18−166.8 (4)
C17—C12—C13—C14−2.7 (8)C2—C1—N2—C1866.1 (6)
O4—C12—C13—C14178.3 (5)O2—C3—O1—C2169.7 (6)
C12—C13—C14—C151.2 (9)N1—C3—O1—C2−10.2 (9)
C13—C14—C15—C161.4 (9)C1—C2—O1—C3−3.0 (9)
C14—C15—C16—C17−2.5 (10)C17—C12—O4—C521.0 (8)
O4—C12—C17—C16−179.5 (5)C13—C12—O4—C5−160.0 (5)
C13—C12—C17—C161.6 (9)C4—C5—O4—C12−90.5 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.932.533.394 (7)154
C9—H9···O3ii0.932.613.383 (8)141
C13—H13···Cg2iii0.932.863.715 (6)153
C18—H18B···Cg3i0.962.743.672 (6)165

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, y+1/2, −z+1/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2466).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • ChemAxon (2008). MarvinSketch ChemAxon Kft, Budapest, Hungary. URL: http://www.chemaxon.com.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Iulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433–434.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Rodrigues, A., Olivato, P. R. & Rittner, R. (2005). Synthesis, pp. 2578–2582.
  • Rodrigues, A., Olivato, P. R., Zukerman-Schpector, J. & Rittner, R. (2006). Z. Kristallogr.221, 226–230.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography