PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m799.
Published online 2009 June 20. doi:  10.1107/S1600536809022326
PMCID: PMC2969465

Bis(2-meth­oxy-6-{[2-(methyl­ammonio)eth­yl]imino­meth­yl}phenolato)thio­cyanato­zinc(II) thio­cyanate hemihydrate

Abstract

The title mononuclear zinc(II) complex, [Zn(C11H16N2O2)2(NCS)]NCS·0.5H2O, consists of a complex cation, a thio­cyanate anion, and half of a water mol­ecule. The ZnII atom in the cation is five-coordinated by two imine N and two phenolate O atoms from two bidentate Schiff base ligands, and by one N atom of a thio­cyanate ligand, forming a distorted trigonal-bipyramidal geometry. The ammonio H atoms are involved in hydrogen bonding with the ligand O atoms and the solvent water molecules (site occupation factor 0.5), which partially determines the conformation of the ligands.

Related literature

For background to the properties of zinc(II) complexes, see: Lipscomb & Sträter (1996 [triangle]); Bertini et al. (1994 [triangle]); Harrison et al. (2006 [triangle]); Tirosh et al. (2005 [triangle]); Musie et al. (2004 [triangle]); Vallee & Auld (1993 [triangle]). For related structures, see: Li et al. (2008 [triangle]); Eltayeb et al. (2008 [triangle]); Zhang & Wang (2007 [triangle]); Cai (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m799-scheme1.jpg

Experimental

Crystal data

  • [Zn(C11H16N2O2)2(NCS)]NCS·0.5H2O
  • M r = 607.06
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m799-efi1.jpg
  • a = 9.997 (2) Å
  • b = 13.017 (3) Å
  • c = 13.379 (3) Å
  • α = 73.70 (3)°
  • β = 77.95 (3)°
  • γ = 72.25 (3)°
  • V = 1577.0 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.95 mm−1
  • T = 298 K
  • 0.30 × 0.28 × 0.27 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.764, T max = 0.784
  • 12467 measured reflections
  • 6300 independent reflections
  • 3199 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081
  • wR(F 2) = 0.190
  • S = 0.99
  • 6300 reflections
  • 346 parameters
  • 18 restraints
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022326/su2115sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022326/su2115Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge Changsha University of Science and Technology for the research grants.

supplementary crystallographic information

Comment

Zinc is the second most abundant transition metal in biology, functions as the active site of hydrolytic enzymes, such as carboxypeptidase and carbonic anhydrase, where it is in a hard donor coordination of nitrogen and oxygen (Lipscomb & Sträter, 1996; Bertini et al., 1994). Zinc atom can readily adopt four-, five- or six-coordination (Harrison et al., 2006; Tirosh et al., 2005; Musie et al., 2004; Vallee & Auld, 1993). As a continuation of work on this area, we report herein the new title zinc(II) complex, with the Schiff base 2-methoxy-6-[(2-methylaminoethylimino)methyl]phenol.

The title compound consists of a complex cation, a thiocyanate anion, and a half water molecule of crystallization (Fig. 1). The ZnII atom in the cation is five-coordinated by two imine N and two phenolate O atoms, from two Schiff base ligands, and by one N atom of a thiocyanate ligand, so forming a trigonal-bipyramidal geometry. The amine N atom is protonated and does not coordinate to the metal ion. The NH2+ hydrogen atoms are involved in hydrogen bonding with the ligand O-atoms which partially determines the conformation of the ligands. The Zn—O and Zn—N bond lengths [1.977 (4) - 1.979 (4) Å and 2.001 (6) - 2.135 (5) Å, respectively] are comparable to the values in similar complexes (Li et al., 2008; Eltayeb et al., 2008; Zhang & Wang, 2007; Cai, 2009).

Experimental

3-Methoxysalicylaldehyde (0.1 mmol, 15.2 mg) and N-methylethane-1,2-diamine (0.1 mmol, 7.4 mg) were stirred into 30 ml of methanol. After 1 h, ammonium thiocyanate (0.1 mmol, 7.6 mg) in water (1 ml) and zinc acetate (0.1 mmol, 22.0 mg) in methanol (10 ml) was added, and the stirring continued for a further 1 h. The filtrate was kept at rt for about a week, depositing colorless block-like crystals of the title compound.

Refinement

All H atoms were positioned geometrically and refined as riding atoms: C—H = 0.93–0.97 Å, N—H = 0.90 Å, O—H = 0.85 Å, with Uiso(H) set to 1.2Ueq(C/O) and 1.5Ueq(methyl C). The structure contains solvent accessible voids of 138.00 A3, which might accommodate a disordered water molecule. The phenyl rings were refined as regular hexagons, with their ADP's made equal to one another.

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Crystal data

[Zn(C11H16N2O2)2(NCS)]NCS·0.5H2OZ = 2
Mr = 607.06F(000) = 634
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.997 (2) ÅCell parameters from 1416 reflections
b = 13.017 (3) Åθ = 2.4–24.1°
c = 13.379 (3) ŵ = 0.95 mm1
α = 73.70 (3)°T = 298 K
β = 77.95 (3)°Block, colorless
γ = 72.25 (3)°0.30 × 0.28 × 0.27 mm
V = 1577.0 (5) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer6300 independent reflections
Radiation source: fine-focus sealed tube3199 reflections with I > 2σ(I)
graphiteRint = 0.057
ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −12→12
Tmin = 0.764, Tmax = 0.784k = −16→16
12467 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0763P)2] where P = (Fo2 + 2Fc2)/3
6300 reflections(Δ/σ)max < 0.001
346 parametersΔρmax = 0.51 e Å3
18 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Zn10.76677 (7)0.52215 (5)0.74443 (5)0.0565 (3)
S10.9762 (3)0.7599 (2)0.8261 (2)0.1405 (10)
S20.7074 (3)0.9701 (2)0.18236 (19)0.1322 (9)
O10.6935 (4)0.3968 (3)0.8352 (3)0.0743 (12)
O20.6337 (7)0.2068 (5)0.8807 (4)0.113 (2)
O30.7078 (5)0.5764 (3)0.6026 (3)0.0751 (12)
O40.5434 (6)0.6530 (5)0.4556 (3)0.0952 (15)
O50.9890 (14)0.0589 (13)0.7592 (16)0.201 (8)0.50
H5A0.93330.01690.78150.241*0.50
H5B1.05450.04780.70840.241*0.50
N10.5803 (6)0.6341 (5)0.8016 (4)0.0714 (14)
N20.5448 (7)0.7845 (4)0.5970 (4)0.0893 (18)
H2A0.57260.71150.59850.107*
H2B0.57460.82050.53210.107*
N30.9438 (6)0.4057 (4)0.6861 (5)0.0735 (15)
N40.9269 (6)0.2291 (4)0.8690 (4)0.0778 (15)
H4A0.96460.18490.82360.093*
H4B0.84120.27070.85190.093*
N50.8880 (6)0.5913 (5)0.7923 (5)0.0799 (16)
N60.6414 (11)0.8946 (7)0.3922 (8)0.150 (3)
C10.4525 (8)0.4901 (9)0.8824 (5)0.085 (2)
C20.5598 (8)0.3956 (7)0.8705 (4)0.0709 (19)
C30.5227 (10)0.2965 (9)0.8983 (5)0.092 (2)
C40.3836 (12)0.2933 (12)0.9369 (6)0.125 (4)
H40.36240.22500.95530.150*
C50.2823 (13)0.3802 (15)0.9484 (8)0.144 (6)
H50.19030.37410.97360.172*
C60.3115 (9)0.4821 (11)0.9230 (6)0.116 (3)
H60.23970.54510.93230.139*
C70.6075 (13)0.1001 (8)0.9051 (9)0.162 (5)
H7A0.57480.07930.97870.242*
H7B0.69360.04660.88760.242*
H7C0.53670.10250.86520.242*
C80.4715 (8)0.6024 (8)0.8540 (5)0.088 (2)
H80.39580.65690.87650.105*
C90.5723 (8)0.7536 (6)0.7858 (6)0.091 (2)
H9A0.63260.76130.82990.109*
H9B0.47570.79320.80670.109*
C100.6180 (9)0.8039 (6)0.6729 (6)0.096 (2)
H10A0.60070.88320.66400.115*
H10B0.71930.77360.65650.115*
C110.3859 (10)0.8191 (7)0.6135 (7)0.114 (3)
H11A0.35220.79580.68670.171*
H11B0.35020.78540.57310.171*
H11C0.35350.89840.59140.171*
C120.8471 (10)0.4272 (7)0.5243 (6)0.085 (2)
C130.7338 (8)0.5214 (6)0.5289 (5)0.0712 (19)
C140.6466 (9)0.5591 (7)0.4474 (5)0.081 (2)
C150.6657 (11)0.5033 (9)0.3720 (6)0.104 (3)
H150.60360.52820.32210.125*
C160.7754 (14)0.4109 (11)0.3687 (8)0.118 (4)
H160.78900.37450.31520.142*
C170.8643 (11)0.3716 (7)0.4418 (8)0.105 (3)
H170.93770.30780.43890.126*
C180.4627 (10)0.7033 (8)0.3714 (6)0.122 (3)
H18A0.52490.71800.30700.183*
H18B0.39790.77160.38320.183*
H18C0.41050.65430.36660.183*
C190.9490 (8)0.3819 (5)0.5987 (7)0.085 (2)
H191.02910.32810.58030.103*
C201.0633 (7)0.3501 (6)0.7456 (7)0.097 (2)
H20A1.11590.40290.74180.117*
H20B1.12630.29130.71370.117*
C211.0177 (7)0.3020 (6)0.8579 (7)0.085 (2)
H21A1.10080.26030.89230.102*
H21B0.96670.36170.89260.102*
C220.9086 (9)0.1580 (7)0.9783 (6)0.105 (3)
H22A0.99930.12521.00280.158*
H22B0.86760.10050.97750.158*
H22C0.84730.20291.02430.158*
C230.9247 (7)0.6603 (6)0.8069 (5)0.0772 (18)
C240.6730 (10)0.9266 (7)0.3022 (8)0.112 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0650 (5)0.0525 (4)0.0489 (4)−0.0206 (3)0.0020 (3)−0.0083 (3)
S10.183 (2)0.131 (2)0.153 (2)−0.0873 (19)−0.0027 (18)−0.0688 (17)
S20.178 (2)0.1057 (17)0.0884 (16)−0.0077 (16)−0.0165 (15)−0.0174 (13)
O10.072 (3)0.074 (3)0.070 (3)−0.034 (2)−0.010 (2)0.010 (2)
O20.139 (5)0.099 (4)0.120 (4)−0.080 (4)−0.067 (4)0.036 (3)
O30.107 (3)0.068 (3)0.047 (2)−0.025 (2)0.001 (2)−0.014 (2)
O40.133 (4)0.111 (4)0.050 (3)−0.053 (4)−0.013 (3)−0.007 (3)
O50.117 (10)0.167 (14)0.36 (3)−0.047 (10)−0.001 (12)−0.148 (16)
N10.074 (4)0.090 (4)0.044 (3)−0.008 (3)−0.009 (3)−0.022 (3)
N20.131 (6)0.059 (3)0.068 (4)−0.018 (4)−0.021 (4)−0.001 (3)
N30.073 (4)0.063 (3)0.081 (4)−0.028 (3)0.019 (3)−0.021 (3)
N40.096 (4)0.053 (3)0.089 (4)−0.024 (3)−0.028 (3)−0.007 (3)
N50.076 (4)0.084 (4)0.095 (4)−0.036 (3)0.004 (3)−0.038 (3)
N60.199 (7)0.121 (6)0.124 (6)−0.057 (5)0.000 (5)−0.018 (5)
C10.080 (6)0.151 (8)0.034 (3)−0.047 (6)−0.003 (3)−0.021 (4)
C20.073 (5)0.111 (6)0.030 (3)−0.046 (5)−0.010 (3)0.007 (3)
C30.114 (7)0.130 (7)0.047 (4)−0.075 (6)−0.033 (4)0.021 (4)
C40.120 (8)0.226 (13)0.056 (5)−0.121 (9)−0.014 (6)0.007 (6)
C50.105 (8)0.31 (2)0.069 (6)−0.127 (11)0.016 (6)−0.059 (9)
C60.074 (5)0.236 (12)0.060 (5)−0.057 (7)0.012 (4)−0.067 (6)
C70.233 (12)0.125 (8)0.174 (10)−0.131 (8)−0.104 (9)0.040 (7)
C80.063 (4)0.146 (8)0.041 (4)0.000 (5)−0.004 (3)−0.032 (4)
C90.113 (6)0.079 (5)0.076 (5)0.007 (4)−0.023 (4)−0.039 (4)
C100.134 (7)0.066 (4)0.093 (6)−0.021 (4)−0.032 (5)−0.021 (4)
C110.120 (7)0.102 (6)0.115 (7)−0.005 (5)−0.038 (5)−0.029 (5)
C120.111 (6)0.084 (5)0.064 (4)−0.053 (5)0.032 (4)−0.024 (4)
C130.095 (5)0.070 (4)0.052 (4)−0.049 (4)0.032 (4)−0.019 (3)
C140.119 (6)0.092 (5)0.044 (4)−0.062 (5)0.012 (4)−0.015 (4)
C150.143 (8)0.137 (8)0.058 (5)−0.086 (7)0.022 (5)−0.037 (5)
C160.162 (10)0.148 (9)0.082 (6)−0.103 (8)0.051 (6)−0.064 (7)
C170.134 (7)0.093 (6)0.088 (6)−0.054 (5)0.047 (6)−0.043 (5)
C180.151 (7)0.166 (9)0.066 (5)−0.080 (7)−0.028 (5)−0.003 (5)
C190.087 (5)0.051 (4)0.103 (6)−0.031 (4)0.042 (5)−0.020 (4)
C200.056 (4)0.068 (5)0.156 (8)−0.017 (4)0.000 (5)−0.018 (5)
C210.072 (4)0.062 (4)0.131 (7)−0.022 (4)−0.026 (4)−0.022 (4)
C220.139 (7)0.089 (5)0.085 (5)−0.028 (5)−0.047 (5)0.004 (4)
C230.077 (5)0.085 (5)0.072 (4)−0.022 (4)−0.002 (3)−0.029 (4)
C240.166 (8)0.074 (5)0.092 (6)−0.041 (5)−0.002 (6)−0.015 (5)

Geometric parameters (Å, °)

Zn1—O31.977 (4)C5—H50.9300
Zn1—O11.979 (4)C6—H60.9300
Zn1—N52.001 (6)C7—H7A0.9600
Zn1—N32.119 (5)C7—H7B0.9600
Zn1—N12.135 (5)C7—H7C0.9600
S1—C231.632 (8)C8—H80.9300
S2—C241.545 (10)C9—C101.503 (10)
O1—C21.325 (7)C9—H9A0.9700
O2—C31.381 (10)C9—H9B0.9700
O2—C71.426 (9)C10—H10A0.9700
O3—C131.314 (7)C10—H10B0.9700
O4—C141.353 (9)C11—H11A0.9600
O4—C181.412 (9)C11—H11B0.9600
O5—H5A0.8500C11—H11C0.9600
O5—H5B0.8500C12—C131.399 (10)
N1—C81.280 (9)C12—C171.437 (11)
N1—C91.489 (9)C12—C191.450 (11)
N2—C101.483 (9)C13—C141.423 (10)
N2—C111.499 (10)C14—C151.351 (10)
N2—H2A0.9000C15—C161.363 (13)
N2—H2B0.9000C15—H150.9300
N3—C191.278 (9)C16—C171.347 (13)
N3—C201.460 (9)C16—H160.9300
N4—C211.462 (8)C17—H170.9300
N4—C221.503 (9)C18—H18A0.9600
N4—H4A0.9000C18—H18B0.9600
N4—H4B0.9000C18—H18C0.9600
N5—C231.144 (8)C19—H190.9300
N6—C241.168 (10)C20—C211.489 (10)
C1—C21.387 (10)C20—H20A0.9700
C1—C61.425 (11)C20—H20B0.9700
C1—C81.465 (11)C21—H21A0.9700
C2—C31.380 (10)C21—H21B0.9700
C3—C41.388 (12)C22—H22A0.9600
C4—C51.290 (16)C22—H22B0.9600
C4—H40.9300C22—H22C0.9600
C5—C61.380 (15)
O3—Zn1—O1114.77 (18)C10—C9—H9A109.4
O3—Zn1—N5122.2 (2)N1—C9—H9B109.4
O1—Zn1—N5123.0 (2)C10—C9—H9B109.4
O3—Zn1—N389.1 (2)H9A—C9—H9B108.0
O1—Zn1—N388.67 (19)N2—C10—C9114.0 (7)
N5—Zn1—N393.1 (2)N2—C10—H10A108.8
O3—Zn1—N189.57 (18)C9—C10—H10A108.8
O1—Zn1—N189.0 (2)N2—C10—H10B108.8
N5—Zn1—N190.4 (2)C9—C10—H10B108.8
N3—Zn1—N1176.5 (2)H10A—C10—H10B107.7
C2—O1—Zn1128.0 (4)N2—C11—H11A109.5
C3—O2—C7118.9 (8)N2—C11—H11B109.5
C13—O3—Zn1128.1 (4)H11A—C11—H11B109.5
C14—O4—C18116.7 (7)N2—C11—H11C109.5
H5A—O5—H5B120.0H11A—C11—H11C109.5
C8—N1—C9116.2 (6)H11B—C11—H11C109.5
C8—N1—Zn1122.4 (5)C13—C12—C17118.7 (9)
C9—N1—Zn1121.3 (5)C13—C12—C19123.6 (7)
C10—N2—C11116.9 (6)C17—C12—C19117.7 (9)
C10—N2—H2A108.1O3—C13—C12123.0 (7)
C11—N2—H2A108.1O3—C13—C14119.9 (7)
C10—N2—H2B108.1C12—C13—C14117.1 (7)
C11—N2—H2B108.1C15—C14—O4124.8 (8)
H2A—N2—H2B107.3C15—C14—C13122.1 (9)
C19—N3—C20118.3 (7)O4—C14—C13113.0 (6)
C19—N3—Zn1121.3 (5)C14—C15—C16120.4 (10)
C20—N3—Zn1120.4 (5)C14—C15—H15119.8
C21—N4—C22113.0 (6)C16—C15—H15119.8
C21—N4—H4A109.0C17—C16—C15120.8 (9)
C22—N4—H4A109.0C17—C16—H16119.6
C21—N4—H4B109.0C15—C16—H16119.6
C22—N4—H4B109.0C16—C17—C12120.8 (9)
H4A—N4—H4B107.8C16—C17—H17119.6
C23—N5—Zn1157.9 (6)C12—C17—H17119.6
C2—C1—C6120.1 (9)O4—C18—H18A109.5
C2—C1—C8124.6 (6)O4—C18—H18B109.5
C6—C1—C8115.3 (9)H18A—C18—H18B109.5
O1—C2—C3119.7 (8)O4—C18—H18C109.5
O1—C2—C1123.2 (7)H18A—C18—H18C109.5
C3—C2—C1117.1 (8)H18B—C18—H18C109.5
C2—C3—O2113.9 (7)N3—C19—C12128.9 (7)
C2—C3—C4120.6 (11)N3—C19—H19115.5
O2—C3—C4125.5 (9)C12—C19—H19115.5
C5—C4—C3123.3 (12)N3—C20—C21112.5 (6)
C5—C4—H4118.4N3—C20—H20A109.1
C3—C4—H4118.4C21—C20—H20A109.1
C4—C5—C6119.4 (11)N3—C20—H20B109.1
C4—C5—H5120.3C21—C20—H20B109.1
C6—C5—H5120.3H20A—C20—H20B107.8
C5—C6—C1119.5 (11)N4—C21—C20111.9 (6)
C5—C6—H6120.2N4—C21—H21A109.2
C1—C6—H6120.2C20—C21—H21A109.2
O2—C7—H7A109.5N4—C21—H21B109.2
O2—C7—H7B109.5C20—C21—H21B109.2
H7A—C7—H7B109.5H21A—C21—H21B107.9
O2—C7—H7C109.5N4—C22—H22A109.5
H7A—C7—H7C109.5N4—C22—H22B109.5
H7B—C7—H7C109.5H22A—C22—H22B109.5
N1—C8—C1127.5 (7)N4—C22—H22C109.5
N1—C8—H8116.3H22A—C22—H22C109.5
C1—C8—H8116.3H22B—C22—H22C109.5
N1—C9—C10111.2 (5)N5—C23—S1179.2 (7)
N1—C9—H9A109.4N6—C24—S2177.3 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4B···O20.902.383.001 (8)126
N4—H4B···O10.901.842.682 (7)155
N4—H4A···O50.901.992.839 (14)157
N2—H2B···N60.901.932.834 (11)179
N2—H2A···O40.902.352.889 (8)119
N2—H2A···O30.901.862.691 (7)153

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2115).

References

  • Bertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. (1994). In Bioinorganic Chemistry Mills Valley, CA, USA: University Science Books.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cai, B.-H. (2009). Acta Cryst. E65, m142. [PMC free article] [PubMed]
  • Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m738–m739. [PMC free article] [PubMed]
  • Harrison, W. T. A., Ramadevi, P. & Kumaresan, S. (2006). Acta Cryst. E62, m513–m515.
  • Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1495. [PMC free article] [PubMed]
  • Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev.96, 2375–2434. [PubMed]
  • Musie, G. T., Li, X. & Powell, D. R. (2004). Acta Cryst. E60, m471–m472.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tirosh, E., Maman, R. & Goldberg, I. (2005). Acta Cryst. E61, m751–m754.
  • Vallee, B. L. & Auld, D. S. (1993). Acc. Chem. Res.26, 543–551.
  • Zhang, Q.-W. & Wang, G.-X. (2007). Acta Cryst. E63, m652–m653.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography