PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1496–o1497.
Published online 2009 June 6. doi:  10.1107/S1600536809020832
PMCID: PMC2969455

2,3-Diamino­pyridinium 4-hydroxy­benzoate

Abstract

In the title compound, C5H8N3 +·C7H5O3 , the pyridine N atom is protonated. In the 4-hydroxy­benzoate anion, the carboxyl­ate group is twisted slightly out of the benzene ring plane by an angle of 3.77 (5)°. The protonated N atom and one of the two amino groups are hydrogen-bonded to the 4-hydroxy­benzoate anion through a pair of N—H(...)O hydrogen bonds, forming an R 2 2(8) ring motif. The crystal structure is further stabilized by O—H(...)O and C—H(...)O hydrogen bonds and π–π inter­actions involving the pyridinium rings [centroid–centroid distance of 3.6277 (5) Å], leading to the formation of a three-dimensional network.

Related literature

For general background to substituted pyridines, see: Pozharski et al. (1997 [triangle]); Katritzky et al. (1996 [triangle]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991 [triangle]); Jeffrey (1997 [triangle]); Scheiner (1997 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1496-scheme1.jpg

Experimental

Crystal data

  • C5H8N3 +·C7H5O3
  • M r = 247.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1496-efi1.jpg
  • a = 10.2915 (2) Å
  • b = 11.4946 (2) Å
  • c = 11.0921 (2) Å
  • β = 112.644 (1)°
  • V = 1211.01 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.51 × 0.39 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.950, T max = 0.986
  • 25821 measured reflections
  • 5296 independent reflections
  • 4257 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.138
  • S = 1.04
  • 5296 reflections
  • 215 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020832/ci2813sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020832/ci2813Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and KB thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KB thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996)). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997;Scheiner, 1997). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound (Fig 1), contains one 2,3-diaminopyridinium cation and one 4-hydroxybenzoate anion. The bond lengths (Allen et al., 1987) and angles are normal. The 2,3-diaminopyridinium cation is planar to within ±0.015 (1) Å. The protonation of N1 atom resulted in a slight increase in the C8—N1—C12 angle [123.47 (7)°]. In the anion, the carboxylate group is twisted slightly away from the attached ring; the dihedral angle between C1-C6 and O2/O3/C7/C6 planes is 3.77 (5)°.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of N—H···O hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). The amino groups (N2 and N3) are involved in N—H···O hydrogen bonding interactions to form a R12(7) ring motif. The hydroxyl group hydrogen atom is also hydrogen-bonded to the carboxylate oxygen atom through O—H···O hydrogen bonds. Moreover O—H···O and C—H···O hydrogen bonds form a R12(6) ring motif (Table 1 and Fig 2). The crystal structure is further stabilized by π-π stacking interactions between the pyridinium rings (C8—C12/N1) at (x, y, z) and (2-x, 2-y, 1-z), with a centroid-to-centroid distance of 3.6277 (5) Å.

Experimental

Hot methanol solutions (20 ml) of 2,3-diaminopyridine (27 mg, Aldrich) and 4-hydroxybenzoic acid (35 mg, Merck) were mixed and warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of the title compound appeared from the mother liquor after a few days.

Refinement

All the H atoms were located in a difference Fourier map and allowed to refine freely [N–H = 0.86–0.91 Å, C–H = 0.95–1.01 (15)Å and O–H = 0.89 (18) Å]

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Dashed lines indicate hydrogen bonds.
Fig. 2.
Crystal packing of the title compound, showing a part of the three-dimensional network. Hydrogen bonds are shown as dashed lines.

Crystal data

C5H8N3+·C7H5O3F(000) = 520
Mr = 247.25Dx = 1.356 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9979 reflections
a = 10.2915 (2) Åθ = 2.7–37.8°
b = 11.4946 (2) ŵ = 0.10 mm1
c = 11.0921 (2) ÅT = 100 K
β = 112.644 (1)°Plate, brown
V = 1211.01 (4) Å30.51 × 0.39 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5296 independent reflections
Radiation source: fine-focus sealed tube4257 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 35.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −16→16
Tmin = 0.950, Tmax = 0.986k = −16→18
25821 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0817P)2 + 0.1673P] where P = (Fo2 + 2Fc2)/3
5296 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.45467 (8)0.16900 (6)0.43336 (6)0.02563 (15)
O20.84786 (7)0.61461 (5)0.52034 (5)0.02074 (13)
O30.73136 (6)0.62156 (5)0.30541 (5)0.01784 (12)
N11.01845 (8)0.79427 (6)0.49674 (6)0.01857 (14)
N20.87767 (8)0.81703 (7)0.27844 (7)0.02195 (15)
N31.05767 (9)0.99458 (8)0.25977 (7)0.02666 (17)
C10.57827 (9)0.42070 (7)0.30431 (7)0.01757 (14)
C20.50323 (9)0.32084 (7)0.30618 (7)0.01879 (15)
C30.52248 (9)0.26810 (7)0.42538 (7)0.01899 (15)
C40.61617 (11)0.31656 (8)0.54174 (8)0.02518 (18)
C50.69083 (10)0.41624 (8)0.53881 (7)0.02324 (17)
C60.67313 (8)0.46970 (7)0.41995 (7)0.01604 (14)
C70.75521 (8)0.57533 (6)0.41592 (7)0.01540 (14)
C80.99181 (9)0.84838 (7)0.38181 (7)0.01678 (14)
C91.08674 (9)0.93716 (7)0.37590 (7)0.01803 (15)
C101.20049 (9)0.96332 (8)0.48910 (8)0.02092 (16)
C111.22331 (9)0.90438 (8)0.60700 (8)0.02314 (17)
C121.13117 (10)0.82008 (8)0.60867 (8)0.02224 (17)
H10.5647 (15)0.4565 (11)0.2226 (13)0.031 (3)*
H20.4376 (14)0.2854 (12)0.2229 (13)0.029 (3)*
H40.6280 (18)0.2759 (15)0.6232 (17)0.051 (4)*
H50.7615 (17)0.4479 (13)0.6225 (15)0.039 (4)*
H101.2669 (14)1.0227 (12)0.4848 (12)0.028 (3)*
H111.3091 (16)0.9246 (13)0.6883 (14)0.039 (4)*
H121.1341 (17)0.7745 (14)0.6809 (15)0.043 (4)*
H1N10.9588 (15)0.7391 (12)0.4987 (13)0.031 (3)*
H1N20.8601 (17)0.8454 (12)0.2011 (15)0.033 (3)*
H2N20.8275 (15)0.7565 (12)0.2854 (13)0.027 (3)*
H1N30.9924 (17)0.9660 (13)0.1840 (15)0.040 (4)*
H2N31.1284 (16)1.0365 (12)0.2548 (14)0.034 (3)*
H1O10.3995 (19)0.1445 (15)0.3531 (18)0.051 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0299 (3)0.0248 (3)0.0172 (3)−0.0123 (2)0.0034 (2)0.0013 (2)
O20.0238 (3)0.0217 (3)0.0141 (2)−0.0059 (2)0.0044 (2)−0.00153 (19)
O30.0188 (3)0.0178 (3)0.0149 (2)0.0002 (2)0.00434 (19)0.00308 (19)
N10.0200 (3)0.0194 (3)0.0148 (3)−0.0020 (2)0.0051 (2)0.0018 (2)
N20.0232 (3)0.0234 (3)0.0154 (3)−0.0072 (3)0.0031 (2)0.0021 (2)
N30.0284 (4)0.0324 (4)0.0171 (3)−0.0118 (3)0.0065 (3)0.0037 (3)
C10.0190 (3)0.0187 (3)0.0131 (3)−0.0014 (3)0.0041 (2)0.0005 (2)
C20.0198 (4)0.0205 (3)0.0131 (3)−0.0037 (3)0.0031 (2)−0.0007 (2)
C30.0202 (4)0.0199 (3)0.0150 (3)−0.0046 (3)0.0047 (3)−0.0001 (2)
C40.0316 (5)0.0273 (4)0.0130 (3)−0.0114 (3)0.0046 (3)0.0008 (3)
C50.0286 (4)0.0251 (4)0.0131 (3)−0.0099 (3)0.0049 (3)−0.0015 (3)
C60.0173 (3)0.0167 (3)0.0131 (3)−0.0016 (2)0.0048 (2)−0.0007 (2)
C70.0167 (3)0.0152 (3)0.0140 (3)0.0013 (2)0.0055 (2)−0.0002 (2)
C80.0177 (3)0.0174 (3)0.0143 (3)−0.0003 (3)0.0052 (2)0.0001 (2)
C90.0183 (3)0.0204 (3)0.0155 (3)−0.0023 (3)0.0066 (2)0.0000 (2)
C100.0192 (4)0.0249 (4)0.0178 (3)−0.0044 (3)0.0062 (3)−0.0010 (3)
C110.0200 (4)0.0294 (4)0.0166 (3)−0.0029 (3)0.0032 (3)−0.0007 (3)
C120.0230 (4)0.0262 (4)0.0145 (3)−0.0014 (3)0.0038 (3)0.0023 (3)

Geometric parameters (Å, °)

O1—C31.3565 (10)C2—C31.3976 (11)
O1—H1O10.897 (18)C2—H20.997 (13)
O2—C71.2666 (9)C3—C41.3956 (11)
O3—C71.2702 (9)C4—C51.3869 (12)
N1—C81.3484 (10)C4—H40.982 (17)
N1—C121.3661 (11)C5—C61.4014 (11)
N1—H1N10.888 (15)C5—H51.001 (15)
N2—C81.3369 (10)C6—C71.4896 (11)
N2—H1N20.869 (15)C8—C91.4316 (11)
N2—H2N20.887 (14)C9—C101.3805 (11)
N3—C91.3739 (10)C10—C111.4100 (12)
N3—H1N30.911 (16)C10—H100.981 (14)
N3—H2N30.892 (15)C11—C121.3608 (13)
C1—C21.3881 (11)C11—H111.017 (15)
C1—C61.3969 (10)C12—H120.948 (15)
C1—H10.955 (13)
C3—O1—H1O1110.1 (11)C4—C5—H5119.3 (8)
C8—N1—C12123.47 (7)C6—C5—H5119.9 (9)
C8—N1—H1N1117.5 (9)C1—C6—C5118.61 (7)
C12—N1—H1N1119.1 (9)C1—C6—C7120.33 (6)
C8—N2—H1N2121.7 (10)C5—C6—C7121.05 (7)
C8—N2—H2N2119.1 (9)O2—C7—O3122.08 (7)
H1N2—N2—H2N2118.2 (13)O2—C7—C6119.94 (6)
C9—N3—H1N3120.6 (10)O3—C7—C6117.96 (6)
C9—N3—H2N3115.4 (9)N2—C8—N1118.57 (7)
H1N3—N3—H2N3117.8 (13)N2—C8—C9122.86 (7)
C2—C1—C6121.05 (7)N1—C8—C9118.57 (7)
C2—C1—H1119.4 (8)N3—C9—C10123.40 (8)
C6—C1—H1119.5 (8)N3—C9—C8118.64 (7)
C1—C2—C3119.72 (7)C10—C9—C8117.92 (7)
C1—C2—H2120.4 (8)C9—C10—C11121.27 (8)
C3—C2—H2119.9 (8)C9—C10—H10118.1 (8)
O1—C3—C4117.67 (7)C11—C10—H10120.6 (8)
O1—C3—C2122.47 (7)C12—C11—C10119.12 (8)
C4—C3—C2119.85 (7)C12—C11—H11121.5 (8)
C5—C4—C3119.99 (7)C10—C11—H11119.4 (8)
C5—C4—H4122.8 (10)C11—C12—N1119.65 (7)
C3—C4—H4117.2 (10)C11—C12—H12127.5 (10)
C4—C5—C6120.78 (7)N1—C12—H12112.8 (10)
C6—C1—C2—C3−0.01 (13)C5—C6—C7—O3−178.02 (8)
C1—C2—C3—O1−178.47 (8)C12—N1—C8—N2−179.40 (8)
C1—C2—C3—C40.46 (14)C12—N1—C8—C90.41 (12)
O1—C3—C4—C5178.40 (9)N2—C8—C9—N31.55 (13)
C2—C3—C4—C5−0.57 (15)N1—C8—C9—N3−178.25 (8)
C3—C4—C5—C60.24 (15)N2—C8—C9—C10179.31 (8)
C2—C1—C6—C5−0.32 (13)N1—C8—C9—C10−0.49 (12)
C2—C1—C6—C7178.59 (7)N3—C9—C10—C11177.91 (9)
C4—C5—C6—C10.21 (14)C8—C9—C10—C110.26 (13)
C4—C5—C6—C7−178.70 (9)C9—C10—C11—C120.06 (14)
C1—C6—C7—O2−175.21 (8)C10—C11—C12—N1−0.16 (14)
C5—C6—C7—O23.67 (12)C8—N1—C12—C11−0.08 (13)
C1—C6—C7—O33.09 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.89 (2)1.903 (15)2.7874 (9)173 (1)
N2—H2N2···O30.89 (1)1.898 (14)2.7843 (9)176 (1)
N2—H1N2···O2i0.87 (1)2.014 (15)2.8689 (9)168 (1)
N3—H1N3···O2i0.91 (2)2.071 (16)2.9790 (10)174 (1)
N3—H2N3···O3ii0.89 (2)2.057 (15)2.9285 (10)166 (1)
O1—H1O1···O3iii0.90 (2)1.775 (19)2.6595 (8)168 (2)
C2—H2···O3iii1.00 (1)2.500 (14)3.2104 (10)128 (1)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2813).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding Oxford University Press.
  • Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures Berlin: Springer.
  • Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II Oxford: Pergamon Press.
  • Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.
  • Scheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography