PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m773.
Published online 2009 June 13. doi:  10.1107/S1600536809021606
PMCID: PMC2969450

[Tris(3,5-diphenyl­pyrazol­yl)hydro­borato]nickel(II) bromide

Abstract

In the title tris­(pyrazol­yl)borate (TpPh2) complex, [NiBr(C45H34BN6)], the Ni, Br and B atoms lie on a crystallographic threefold axis and a distorted NiN3Br tetra­hedral geometry arises for the metal ion. In the crystal, C—H(...)(C=C) and C—H(...)π inter­actions help to establish the polar crystal packing.

Related literature

For other TpRNiX (X = Cl, Br) complexes, see: Desrochers et al. (2003 [triangle], 2006 [triangle]); Kunrath et al. (2003 [triangle]); Uehara et al. (2002 [triangle]); Guo et al. (1998 [triangle]); Harding et al. (2007 [triangle]). For ionic radius data, see: Shannon (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m773-scheme1.jpg

Experimental

Crystal data

  • [NiBr(C45H34BN6)]
  • M r = 808.21
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-65-0m773-efi5.jpg
  • a = 12.8227 (8) Å
  • c = 19.327 (3) Å
  • V = 2752.0 (5) Å3
  • Z = 3
  • Mo Kα radiation
  • μ = 1.66 mm−1
  • T = 150 K
  • 0.24 × 0.24 × 0.21 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.691, T max = 0.722
  • 5609 measured reflections
  • 2075 independent reflections
  • 1943 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.063
  • S = 1.06
  • 2075 reflections
  • 163 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.29 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 670 Friedel pairs
  • Flack parameter: 0.020 (8)

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021606/hb2976sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021606/hb2976Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the Thailand Research Fund (grant No. RMU5080029) and the National Research Council of Thailand (grant No. WU51106) for support of this work.

supplementary crystallographic information

Comment

Tris(pyrazolyl)borates are versatile and popular ligands in coordination chemistry with many complexes now known. Despite the C3 symmetry present in many tris(pyrazolyl)borate ligands few tetrahedral complexes crystallize in space groups containing a C3 axis (Desrochers et al., 2003, 2006; Kunrath et al., 2003; Uehara et al., 2002). Rare examples which do contain a C3 axis include [TpPh2NiCl] and [TpPh2Ni(OAc)] despite the later being formally five-coordinate (Guo et al., 1998; Harding et al., 2007). In the following paper we report a further example namely, the title compound, [TpPh2NiBr], (I).

The reaction of NiBr2.2H2O with KTpPh2 readily affords the title complex as a red-purple solid in moderate yield. Crystals were grown by allowing hexanes to diffuse into a concentrated solution of the complex in CH2Cl2. The compound crystallizes in the trigonal R3 space group. The structure is shown in Figure 1 while important bond lengths and angles are given in the supporting tables. The geometry around the nickel centre is best described as distorted tetrahedral {N1—Ni—N1i = 93.11 (8), N1—Ni—Br1 = 123.04 (6)}. The Ni—N bond lengths are very slightly longer by ca. 0.01 Å than those found in [TpPh2NiCl] (Guo et al., 1998). A similar difference is observed in the structures of [Tp*NiCl] and [Tp*NiBr] (Desrochers et al., 2003, 2006). The Ni—Br distance is 2.3523 (6) Å, ca 0.15 Å longer than the corresponding Ni—Cl distance in [TpPh2NiCl], and consistent with the difference in the bromine and chlorine covalent radii (0.15 Å; Shannon, 1976). Interestingly, the Ni—Br bond length in (I) is significantly longer than that observed for [Tp*NiBr] (2.291 (2) Å). A similar increase, albeit not so marked, is also found between [TpPh2NiCl] and [Tp*NiCl] (ΔNi-Cl = 0.03 Å) suggesting that the larger TpPh2 ligand may be responsible for the longer nickel-halide bond distances.

The crystal packing in the structure of (I) contains several C—H···π interactions between the phenyl rings of neighbouring TpPh2 ligands (see Figure 2). The hydrogen atoms H6 and H11 are directed at the π bonds between C1—N1 and C4—C5, respectively {(C1—N1)π···H6 2.657 (3) Å; (C4—C5)π···H11 2.834 (5) Å} while H5 interacts with a phenyl ring (Cg1···H5 2.730 (3) Å; Cg1 is the centroid of ring C10—C15). Similar interactions occur on all three faces of the TpPh2 ligand creating a network of triangular columns such that all the [TpPh2NiBr] molecules point in the same direction and the phenyl rings adopt a propeller configuration.

Experimental

NiBr2.2H2O (34 mg, 0.14 mmol) was dissolved in THF (5 ml) giving a green solution and then stirred for 5 min. KTpPh2 (95 mg, 0.15 mmol) was dissolved in THF (5 ml) giving a pale yellow solution. Addition of the KTpPh2 solution to the Ni solution resulted in a colour change to a red-pink solution. The solution was stirred for 16 hrs. The solution was reduced to dryness, redissolved in fresh THF (2 ml) and filtered through celite. The purple-pink solution was layered with hexanes (10 ml). After two days purple-pink blocks of (I) appeared. These were washed with EtOH (3 x 3 ml) and hexanes (2 x 5 ml) (59 mg, 54%). νmax(KBr)/cm-1 3059w, 2966w, 2854w (νCH), 2626w (νBH). δH (300 MHz; CDCl3; SiMe4), 7.63 (br m, m- and p-Ph, 18H), 8.53 (br s, o-Ph, 6H), 8.86 (br s, o-Ph, 6H). UV–Vis λmax(CH2Cl2)/nm 318 (ε/dm3mol-1cm-1 3140), 502 (600), 828 (120), 926 (160). m/z (ESI) 727 [M—Br-]+. Anal. Calc. for C45H34N6BBrNi [TpPh2NiBr]: C, 66.87; H, 4.24; N 10.40 Found: C, 66.62; H, 4.29; N, 10.17%

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes:(i) -x + y+1, -x + 1, z; (ii) -y + 1, x-y, z].
Fig. 2.
The molecular packing in (I) showing the three C—H···π interactions. Only selected atoms are labelled or shown for clairty [Symmetry codes:(i) 4/3 - x + y, 2/3 - x, -1/3 + z; (ii) 4/3 - y, -1/3 + x-y, -1/3 + z]. ...

Crystal data

[NiBr(C45H34BN6)]Dx = 1.463 Mg m3
Mr = 808.21Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 2851 reflections
Hall symbol: R 3θ = 2.8–30.6°
a = 12.8227 (8) ŵ = 1.66 mm1
c = 19.327 (3) ÅT = 150 K
V = 2752.0 (5) Å3Block, purple–pink
Z = 30.24 × 0.24 × 0.21 mm
F(000) = 1242

Data collection

Bruker SMART CCD diffractometer2075 independent reflections
Radiation source: fine-focus sealed tube1943 reflections with I > 2σ(I)
graphiteRint = 0.037
Detector resolution: 100 pixels mm-1θmax = 27.5°, θmin = 2.1°
[var phi] scansh = −16→16
Absorption correction: multi-scan (SADABS; Bruker, 1997)k = −11→16
Tmin = 0.691, Tmax = 0.722l = −21→25
5609 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.063w = 1/[σ2(Fo2) + (0.0169P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2075 reflectionsΔρmax = 0.27 e Å3
163 parametersΔρmin = −0.29 e Å3
1 restraintAbsolute structure: Flack (1983), 670 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.020 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.66670.33330.732391 (16)0.02249 (14)
Ni10.66670.33330.61068 (2)0.01335 (14)
N10.75319 (18)0.26622 (19)0.55312 (10)0.0127 (4)
N20.75175 (19)0.29001 (19)0.48407 (10)0.0128 (4)
B10.66670.33330.4567 (3)0.0139 (10)
H1B0.66670.33330.39830.017*
C10.8082 (2)0.2003 (2)0.55910 (12)0.0146 (5)
C20.8419 (3)0.1815 (3)0.49355 (13)0.0166 (6)
H20.88120.13730.48290.020*
C30.8064 (2)0.2405 (2)0.44716 (12)0.0136 (5)
C40.8224 (3)0.2532 (3)0.37198 (14)0.0135 (5)
C50.7922 (2)0.1509 (2)0.33065 (13)0.0173 (6)
H50.76010.07380.35150.021*
C60.8094 (3)0.1632 (3)0.25990 (16)0.0182 (7)
H60.78900.09420.23250.022*
C70.8557 (2)0.2743 (3)0.22844 (13)0.0201 (6)
H70.86680.28140.17970.024*
C80.8860 (3)0.3759 (3)0.26839 (13)0.0215 (6)
H80.91790.45250.24690.026*
C90.8698 (3)0.3652 (3)0.33951 (14)0.0190 (6)
H90.89130.43500.36650.023*
C100.8239 (2)0.1510 (3)0.62468 (13)0.0163 (6)
C110.8460 (2)0.2131 (3)0.68680 (14)0.0185 (6)
H110.85640.29190.68720.022*
C120.8530 (3)0.1605 (3)0.74866 (17)0.0230 (7)
H120.86500.20230.79120.028*
C130.8422 (3)0.0472 (3)0.74807 (16)0.0269 (7)
H130.84680.01130.79010.032*
C140.8246 (3)−0.0137 (3)0.68574 (15)0.0234 (7)
H140.8191−0.09040.68490.028*
C150.8150 (3)0.0381 (3)0.62476 (16)0.0209 (6)
H150.8022−0.00410.58240.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02665 (19)0.02665 (19)0.0142 (2)0.01332 (9)0.0000.000
Ni10.0140 (2)0.0140 (2)0.0120 (3)0.00702 (10)0.0000.000
N10.0107 (10)0.0149 (11)0.0121 (9)0.0061 (9)−0.0007 (8)0.0007 (8)
N20.0137 (11)0.0146 (11)0.0096 (8)0.0068 (9)0.0007 (8)0.0006 (8)
B10.0112 (15)0.0112 (15)0.019 (2)0.0056 (8)0.0000.000
C10.0121 (13)0.0105 (13)0.0199 (12)0.0047 (11)−0.0016 (10)0.0005 (10)
C20.0186 (14)0.0165 (15)0.0191 (16)0.0122 (13)−0.0028 (13)0.0009 (12)
C30.0097 (13)0.0094 (12)0.0189 (12)0.0026 (11)−0.0001 (9)0.0010 (9)
C40.0106 (13)0.0148 (14)0.0169 (12)0.0077 (11)0.0010 (10)−0.0012 (11)
C50.0171 (15)0.0124 (14)0.0221 (13)0.0071 (12)0.0005 (11)0.0031 (11)
C60.0191 (16)0.0155 (15)0.0234 (16)0.0113 (13)−0.0015 (13)−0.0039 (13)
C70.0180 (15)0.0237 (15)0.0153 (12)0.0080 (13)0.0044 (11)0.0003 (11)
C80.0210 (15)0.0179 (15)0.0210 (12)0.0062 (12)0.0060 (11)0.0053 (11)
C90.0199 (16)0.0172 (15)0.0193 (13)0.0087 (13)0.0016 (11)−0.0029 (11)
C100.0089 (13)0.0166 (14)0.0215 (13)0.0049 (11)0.0001 (10)0.0043 (11)
C110.0136 (14)0.0155 (14)0.0233 (13)0.0050 (12)−0.0050 (11)0.0012 (11)
C120.0204 (17)0.0291 (19)0.0180 (15)0.0112 (15)−0.0034 (13)0.0002 (14)
C130.0206 (16)0.0304 (17)0.0268 (14)0.0105 (14)−0.0022 (13)0.0126 (13)
C140.0206 (16)0.0195 (16)0.0333 (16)0.0124 (13)−0.0008 (12)0.0075 (13)
C150.0185 (15)0.0194 (16)0.0257 (14)0.0101 (14)−0.0019 (12)−0.0011 (12)

Geometric parameters (Å, °)

Ni1—Br12.3523 (6)C5—H50.9500
Ni1—N12.041 (2)C6—C71.380 (4)
Ni1—N1i2.041 (2)C6—H60.9500
Ni1—N1ii2.041 (2)C7—C81.392 (4)
N1—C11.350 (3)C7—H70.9500
N1—N21.371 (3)C8—C91.387 (4)
N2—C31.360 (3)C8—H80.9500
N2—B11.544 (3)C9—H90.9500
B1—N2i1.544 (3)C10—C111.389 (4)
B1—N2ii1.544 (3)C10—C151.394 (4)
B1—H1B1.1278C11—C121.397 (4)
C1—C21.398 (4)C11—H110.9500
C1—C101.475 (3)C12—C131.390 (5)
C2—C31.388 (3)C12—H120.9500
C2—H20.9500C13—C141.391 (5)
C3—C41.465 (4)C13—H130.9500
C4—C91.397 (4)C14—C151.388 (4)
C4—C51.415 (4)C14—H140.9500
C5—C61.381 (4)C15—H150.9500
N1—Ni1—N1i93.11 (8)C4—C5—H5120.0
N1—Ni1—N1ii93.11 (8)C7—C6—C5121.0 (3)
N1i—Ni1—N1ii93.11 (8)C7—C6—H6119.5
N1—Ni1—Br1123.04 (6)C5—C6—H6119.5
N1i—Ni1—Br1123.04 (6)C6—C7—C8119.7 (2)
N1ii—Ni1—Br1123.04 (6)C6—C7—H7120.1
C1—N1—N2106.99 (19)C8—C7—H7120.1
C1—N1—Ni1141.45 (17)C9—C8—C7119.9 (3)
N2—N1—Ni1111.47 (15)C9—C8—H8120.0
C3—N2—N1109.82 (19)C7—C8—H8120.0
C3—N2—B1127.6 (2)C8—C9—C4120.9 (3)
N1—N2—B1120.3 (2)C8—C9—H9119.5
N2—B1—N2i108.89 (19)C4—C9—H9119.5
N2—B1—N2ii108.89 (19)C11—C10—C15118.8 (3)
N2i—B1—N2ii108.89 (19)C11—C10—C1121.9 (3)
N2—B1—H1B110.0C15—C10—C1119.2 (2)
N2i—B1—H1B110.0C10—C11—C12120.4 (3)
N2ii—B1—H1B110.0C10—C11—H11119.8
N1—C1—C2109.5 (2)C12—C11—H11119.8
N1—C1—C10124.6 (2)C13—C12—C11120.1 (3)
C2—C1—C10125.8 (2)C13—C12—H12120.0
C3—C2—C1106.1 (2)C11—C12—H12120.0
C3—C2—H2127.0C14—C13—C12119.8 (3)
C1—C2—H2127.0C14—C13—H13120.1
N2—C3—C2107.6 (2)C12—C13—H13120.1
N2—C3—C4122.9 (2)C15—C14—C13119.7 (3)
C2—C3—C4129.5 (2)C15—C14—H14120.2
C9—C4—C5118.4 (2)C13—C14—H14120.2
C9—C4—C3121.7 (3)C14—C15—C10121.1 (3)
C5—C4—C3119.9 (2)C14—C15—H15119.4
C6—C5—C4119.9 (3)C10—C15—H15119.4
C6—C5—H5120.0

Symmetry codes: (i) −x+y+1, −x+1, z; (ii) −y+1, xy, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1iii0.952.733.589 (3)151

Symmetry codes: (iii) −x+y+5/3, −x+1/3, z−2/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2976).

References

  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desrochers, P. J., LeLievre, L., Johnson, R. J., Lamb, B. T., Phelps, A. L., Cordes, A. W., Gu, W. & Cramer, S. P. (2003). Inorg. Chem.42, 7945–7950. [PubMed]
  • Desrochers, P. J., Telser, J., Zvyagin, S. A., Ozarowski, A., Krzystek, J. & Vicic, D. A. (2006). Inorg. Chem.45, 8930–8941. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Guo, S., Ding, E., Yin, Y. & Yu, K. (1998). Polyhedron, 17, 3841–3849.
  • Harding, D. J., Harding, P., Adams, H. & Tuntulani, T. (2007). Inorg. Chim. Acta, 360, 3335–3340.
  • Kunrath, F. A., de Souza, R. F., Casagrande, O. L. Jr, Brooks, N. R. & Young, V. G. Jr (2003). Organometallics, 22, 4739–4743.
  • Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Uehara, K., Hikichi, S. & Akita, M. (2002). J. Chem. Soc. Dalton Trans. pp. 3529–3538.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography