PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1541–o1542.
Published online 2009 June 10. doi:  10.1107/S160053680902131X
PMCID: PMC2969439

Ethyl 2-[(2,6-dimethyl­phen­yl)hydrazono]-3-oxobutanoate

Abstract

The title compound, C14H18N2O3, crystallizes with two independent mol­ecules in the asymmetric unit, having closely comparable geometries. Both mol­ecules are essentially planar [maximum deviations from the mean plane of 0.069 (1) and 0.068 (1) Å for the two mol­ecules] and contain an intra­molecular N—H(...)O hydrogen bond which generates a ring with graph-set motif S(6). In the crystal, the mol­ecules are linked into chains along the c axis by inter­molecular C—H(...)O hydrogen bonds, and inter­molecular C—H(...)π inter­actions are also present.

Related literature

For details of the isolation and cytotoxic properties of oxobutanoate derivatives, see: Billington et al. (1979 [triangle]); Stanchev et al. (2008 [triangle]). For related structures, see: Alpaslan et al. (2005 [triangle]); Fun et al. (2009 [triangle]). For details of the synthesis, see: Amir & Agarwal, (1997 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1541-scheme1.jpg

Experimental

Crystal data

  • C14H18N2O3
  • M r = 262.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1541-efi1.jpg
  • a = 6.8072 (1) Å
  • b = 17.4339 (2) Å
  • c = 22.9238 (3) Å
  • β = 90.921 (1)°
  • V = 2720.15 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 K
  • 0.43 × 0.22 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.962, T max = 0.991
  • 38064 measured reflections
  • 6206 independent reflections
  • 4862 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.110
  • S = 1.03
  • 6206 reflections
  • 359 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680902131X/bi2373sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902131X/bi2373Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.

supplementary crystallographic information

Comment

Derivatives of oxobutanoates are biologically important due to their interesting properties. 4-Methylthio-2-oxobutanoate was identified in the culture fluids of a range of bacteria, the yeast Saccharomyces cerevisiae and the fungus Penicillium digitatum (Billington et al., 1979). Some of the oxobutanoate exhibited cytotoxic property (Stanchev et al., 2008). Crystal structures of ethyl 4-chloro-2-[2-(2-methoxyphenyl)hydrazono]-3-oxobutanoate (Alpaslan et al., 2005) and ethyl 2-[(4-chlorophenyl)hydrazono]-3-oxobutanoate (Fun et al., 2009) have been reported.

There are two independent molecules (A and B) in the asymmetric unit of the title compound (Fig. 1). The benzene rings in the two molecules (C1A–C6A and C1B—C6B) are almost coplanar, forming a dihedral angle of 3.14 (6)°. The mean plane of the part of the oxobutanoate unit, C7A—C12A/O3A in molecule A and C7B—C12B/O3B in molecule B, is slightly twisted from the mean planes of the phenyl rings, (C1A—C6A) and (C1B—C6B), forming dihedral angles of 2.26 (7)° in molecule A and 2.16 (8)° in molecule B respectively. An intramolecular N—H···O hydrogen bond is present in both molecules, generating a ring with graph-set motif S(6).

In the crystal packing (Fig. 2), the molecules are linked into chains along the c axis by intermolecular C—H···O hydrogen bonds. Intramolecular O···N short contacts (2.5362 (13)Å and 2.8224 (14)Å) and intermolecular C—H···π interactions (Table 1) are also observed.

Experimental

The title compound was prepared according to a literature procedure (Amir & Agarwal, 1997): 2,6-dimethylaniline (2.26 g, 0.01 mol) was dissolved in dilute hydrochloric acid (22.0 ml, 9.0 ml HCl dissolved in 13.0 ml water) and cooled to 0°C in an ice bath. To this, a cold solution of sodium nitrite (3.2 g, 0.0462 mol in 10.0 ml water) was added, with the temperature of the reaction mixture kept below 5°C. The resulting diazonium salt solution was filtered into a cooled solution of ethylacetoacetate (3.4 ml) and sodium acetate (7.0 g) in ethanol (100 ml). The resulting yellow-orange solid was filtered, washed with ice cold water, dried in air and recrystallized from methanol. Yield 3.65 g (86.5%), m.p. 338–340 K.

Refinement

H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating-group model was used for the methyl groups. H atoms bound to N were located from a Fourier map and allowed to refine freely.

Figures

Fig. 1.
Molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms
Fig. 2.
Packing diagram viewed along the a axis, showing molecular chains along the c axis. Dashed lines indicate hydrogen bonds.

Crystal data

C14H18N2O3F(000) = 1120
Mr = 262.30Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9924 reflections
a = 6.8072 (1) Åθ = 2.9–33.1°
b = 17.4339 (2) ŵ = 0.09 mm1
c = 22.9238 (3) ÅT = 100 K
β = 90.921 (1)°Plate, yellow
V = 2720.15 (6) Å30.43 × 0.22 × 0.10 mm
Z = 8

Data collection

Bruker SMART APEXII CCD diffractometer6206 independent reflections
Radiation source: fine-focus sealed tube4862 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −8→8
Tmin = 0.962, Tmax = 0.991k = −22→22
38064 measured reflectionsl = −29→29

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0474P)2 + 1.0468P] where P = (Fo2 + 2Fc2)/3
6206 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat operating at 110.0 (1) K (Cosier & Glazer, 1986).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1A0.40917 (16)0.60365 (5)0.14873 (4)0.0254 (2)
O2A0.40976 (16)0.67847 (5)−0.02578 (4)0.0247 (2)
O3A0.40376 (15)0.79917 (5)0.00793 (4)0.0184 (2)
N1A0.40541 (17)0.74634 (6)0.17034 (4)0.0154 (2)
N2A0.40625 (16)0.75908 (6)0.11429 (4)0.0148 (2)
C1A0.4144 (2)0.77921 (8)0.27072 (5)0.0181 (3)
C2A0.4216 (2)0.83300 (8)0.31550 (6)0.0225 (3)
H2AA0.42520.81660.35410.027*
C3A0.4235 (2)0.91073 (8)0.30312 (6)0.0236 (3)
H3AA0.43060.94630.33330.028*
C4A0.4149 (2)0.93537 (8)0.24572 (6)0.0200 (3)
H4AA0.41450.98780.23810.024*
C5A0.40668 (19)0.88417 (8)0.19881 (5)0.0160 (3)
C6A0.40846 (19)0.80554 (8)0.21245 (5)0.0154 (3)
C7A0.4061 (2)0.70016 (7)0.07753 (5)0.0150 (3)
C8A0.4068 (2)0.61935 (8)0.09568 (6)0.0182 (3)
C9A0.4072 (2)0.55506 (8)0.05250 (6)0.0255 (3)
H9AA0.40850.50690.07290.038*
H9AB0.52180.55880.02880.038*
H9AC0.29150.55820.02810.038*
C10A0.4071 (2)0.72277 (8)0.01496 (5)0.0155 (3)
C11A0.4007 (2)0.82543 (8)−0.05216 (5)0.0175 (3)
H11A0.28580.8056−0.07270.021*
H11B0.51720.8080−0.07210.021*
C12A0.3949 (2)0.91184 (8)−0.05037 (6)0.0216 (3)
H12A0.38350.9315−0.08940.032*
H12B0.51360.9308−0.03230.032*
H12C0.28400.9283−0.02820.032*
C13A0.4136 (2)0.69449 (8)0.28431 (6)0.0241 (3)
H13A0.41610.68720.32580.036*
H13B0.52720.67080.26780.036*
H13C0.29690.67150.26800.036*
C14A0.3951 (2)0.91598 (8)0.13753 (6)0.0201 (3)
H14A0.38960.97100.13910.030*
H14B0.27920.89680.11810.030*
H14C0.50920.90040.11650.030*
O1B0.09517 (17)0.08911 (5)0.43092 (4)0.0262 (2)
O2B0.09218 (17)0.21913 (6)0.27668 (4)0.0263 (2)
O3B0.08746 (15)0.32485 (5)0.33244 (4)0.0189 (2)
N1B0.09558 (17)0.22067 (7)0.47965 (4)0.0153 (2)
N2B0.09259 (16)0.25040 (6)0.42748 (4)0.0147 (2)
C1B0.0930 (2)0.22404 (8)0.58338 (5)0.0179 (3)
C2B0.0920 (2)0.26448 (8)0.63570 (6)0.0209 (3)
H2BA0.08950.23770.67080.025*
C3B0.0948 (2)0.34375 (8)0.63647 (6)0.0214 (3)
H3BA0.09380.37000.67180.026*
C4B0.0992 (2)0.38391 (8)0.58425 (6)0.0180 (3)
H4BA0.10140.43720.58530.022*
C5B0.10050 (19)0.34683 (7)0.53016 (5)0.0151 (3)
C6B0.09607 (19)0.26601 (7)0.53072 (5)0.0144 (3)
C7B0.0909 (2)0.20567 (7)0.38054 (5)0.0153 (3)
C8B0.0895 (2)0.12139 (8)0.38275 (6)0.0183 (3)
C9B0.0792 (2)0.07339 (8)0.32851 (6)0.0256 (3)
H9BA0.07340.02010.33900.038*
H9BB0.19380.08250.30560.038*
H9BC−0.03620.08680.30620.038*
C10B0.0897 (2)0.24863 (8)0.32454 (5)0.0166 (3)
C11B0.0923 (2)0.37110 (8)0.27969 (5)0.0186 (3)
H11C−0.02360.36150.25560.022*
H11D0.20770.35890.25730.022*
C12B0.0979 (2)0.45359 (8)0.29895 (6)0.0229 (3)
H12D0.11180.48620.26550.034*
H12E0.20730.46130.32520.034*
H12F−0.02190.46600.31840.034*
C13B0.0906 (2)0.13761 (8)0.58360 (6)0.0260 (3)
H13D0.09220.11940.62310.039*
H13E0.20420.11870.56390.039*
H13F−0.02610.11970.56390.039*
C14B0.1078 (2)0.39513 (8)0.47569 (6)0.0192 (3)
H14D0.11330.44840.48620.029*
H14E−0.00760.38580.45220.029*
H14F0.22250.38200.45400.029*
H1NA0.403 (3)0.6967 (11)0.1816 (7)0.037 (5)*
H1NB0.099 (3)0.1685 (12)0.4821 (8)0.048 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0396 (7)0.0191 (5)0.0174 (5)−0.0012 (5)0.0000 (4)0.0023 (4)
O2A0.0393 (7)0.0208 (5)0.0139 (4)−0.0009 (5)0.0021 (4)−0.0042 (4)
O3A0.0259 (6)0.0170 (5)0.0122 (4)−0.0002 (4)0.0006 (4)0.0001 (3)
N1A0.0180 (6)0.0166 (6)0.0115 (5)−0.0003 (5)0.0002 (4)−0.0003 (4)
N2A0.0126 (6)0.0198 (6)0.0121 (5)0.0001 (5)0.0002 (4)−0.0003 (4)
C1A0.0149 (7)0.0250 (7)0.0143 (6)0.0015 (6)−0.0001 (5)−0.0010 (5)
C2A0.0222 (8)0.0326 (8)0.0127 (6)0.0034 (6)−0.0010 (5)−0.0031 (5)
C3A0.0222 (8)0.0296 (8)0.0188 (6)0.0041 (6)−0.0022 (6)−0.0113 (6)
C4A0.0163 (7)0.0193 (7)0.0243 (7)0.0013 (6)0.0000 (6)−0.0045 (5)
C5A0.0106 (7)0.0213 (7)0.0161 (6)0.0003 (5)0.0007 (5)−0.0018 (5)
C6A0.0111 (7)0.0212 (6)0.0138 (6)0.0004 (5)0.0000 (5)−0.0032 (5)
C7A0.0146 (7)0.0171 (6)0.0134 (6)0.0001 (5)0.0004 (5)−0.0015 (5)
C8A0.0182 (7)0.0181 (7)0.0182 (6)−0.0001 (6)0.0002 (5)−0.0009 (5)
C9A0.0394 (10)0.0153 (7)0.0217 (7)−0.0014 (6)−0.0017 (6)−0.0020 (5)
C10A0.0134 (7)0.0180 (6)0.0150 (6)−0.0003 (5)0.0004 (5)−0.0015 (5)
C11A0.0177 (7)0.0232 (7)0.0114 (6)−0.0008 (6)−0.0001 (5)0.0015 (5)
C12A0.0207 (8)0.0214 (7)0.0227 (7)−0.0001 (6)0.0000 (6)0.0042 (5)
C13A0.0314 (9)0.0275 (8)0.0133 (6)0.0002 (7)−0.0006 (6)0.0023 (5)
C14A0.0229 (8)0.0184 (7)0.0192 (6)−0.0008 (6)0.0017 (6)0.0004 (5)
O1B0.0401 (7)0.0182 (5)0.0203 (5)0.0010 (5)−0.0003 (5)0.0004 (4)
O2B0.0405 (7)0.0268 (5)0.0115 (4)0.0002 (5)0.0009 (4)−0.0036 (4)
O3B0.0263 (6)0.0182 (5)0.0123 (4)0.0005 (4)0.0009 (4)0.0017 (3)
N1B0.0182 (6)0.0150 (5)0.0128 (5)0.0010 (5)0.0004 (4)0.0006 (4)
N2B0.0137 (6)0.0188 (5)0.0115 (5)0.0001 (5)0.0001 (4)0.0007 (4)
C1B0.0168 (7)0.0214 (7)0.0154 (6)0.0011 (6)−0.0002 (5)0.0023 (5)
C2B0.0219 (8)0.0293 (8)0.0115 (6)0.0015 (6)−0.0003 (5)0.0024 (5)
C3B0.0203 (8)0.0308 (8)0.0130 (6)0.0021 (6)−0.0006 (5)−0.0061 (5)
C4B0.0152 (7)0.0190 (7)0.0198 (6)0.0013 (5)−0.0008 (5)−0.0043 (5)
C5B0.0118 (7)0.0183 (6)0.0151 (6)0.0011 (5)−0.0004 (5)−0.0001 (5)
C6B0.0124 (7)0.0184 (6)0.0122 (6)0.0008 (5)−0.0001 (5)−0.0011 (5)
C7B0.0138 (7)0.0182 (6)0.0139 (6)0.0011 (5)0.0004 (5)−0.0012 (5)
C8B0.0175 (7)0.0194 (7)0.0181 (6)0.0011 (6)0.0006 (5)−0.0026 (5)
C9B0.0348 (9)0.0198 (7)0.0220 (7)0.0030 (6)−0.0005 (6)−0.0069 (6)
C10B0.0142 (7)0.0209 (7)0.0148 (6)0.0007 (5)−0.0001 (5)−0.0006 (5)
C11B0.0170 (7)0.0257 (7)0.0132 (6)0.0003 (6)−0.0002 (5)0.0056 (5)
C12B0.0212 (8)0.0237 (7)0.0238 (7)0.0006 (6)−0.0011 (6)0.0060 (5)
C13B0.0384 (10)0.0216 (7)0.0179 (6)0.0014 (7)0.0005 (6)0.0058 (5)
C14B0.0238 (8)0.0160 (6)0.0179 (6)0.0005 (6)0.0007 (5)0.0002 (5)

Geometric parameters (Å, °)

O1A—C8A1.2463 (15)O1B—C8B1.2395 (16)
O2A—C10A1.2123 (15)O2B—C10B1.2120 (15)
O3A—C10A1.3419 (16)O3B—C10B1.3413 (16)
O3A—C11A1.4514 (14)O3B—C11B1.4542 (15)
N1A—N2A1.3040 (14)N1B—N2B1.3033 (14)
N1A—C6A1.4132 (16)N1B—C6B1.4125 (15)
N1A—H1NA0.904 (18)N1B—H1NB0.91 (2)
N2A—C7A1.3287 (16)N2B—C7B1.3287 (16)
C1A—C2A1.3905 (18)C1B—C2B1.3914 (18)
C1A—C6A1.4126 (17)C1B—C6B1.4121 (17)
C1A—C13A1.5095 (19)C1B—C13B1.5069 (19)
C2A—C3A1.385 (2)C2B—C3B1.382 (2)
C2A—H2AA0.930C2B—H2BA0.930
C3A—C4A1.3845 (19)C3B—C4B1.3874 (18)
C3A—H3AA0.930C3B—H3BA0.930
C4A—C5A1.3979 (18)C4B—C5B1.3985 (17)
C4A—H4AA0.930C4B—H4BA0.930
C5A—C6A1.4060 (18)C5B—C6B1.4095 (18)
C5A—C14A1.5112 (17)C5B—C14B1.5076 (17)
C7A—C8A1.4690 (18)C7B—C8B1.4702 (18)
C7A—C10A1.4876 (17)C7B—C10B1.4864 (17)
C8A—C9A1.4953 (18)C8B—C9B1.4994 (18)
C9A—H9AA0.960C9B—H9BA0.960
C9A—H9AB0.960C9B—H9BB0.960
C9A—H9AC0.960C9B—H9BC0.960
C11A—C12A1.5075 (18)C11B—C12B1.5046 (19)
C11A—H11A0.970C11B—H11C0.970
C11A—H11B0.970C11B—H11D0.970
C12A—H12A0.960C12B—H12D0.960
C12A—H12B0.960C12B—H12E0.960
C12A—H12C0.960C12B—H12F0.960
C13A—H13A0.960C13B—H13D0.960
C13A—H13B0.960C13B—H13E0.960
C13A—H13C0.960C13B—H13F0.960
C14A—H14A0.960C14B—H14D0.960
C14A—H14B0.960C14B—H14E0.960
C14A—H14C0.960C14B—H14F0.960
C10A—O3A—C11A115.28 (9)C10B—O3B—C11B115.88 (10)
N2A—N1A—C6A123.25 (11)N2B—N1B—C6B122.54 (11)
N2A—N1A—H1NA116.5 (11)N2B—N1B—H1NB116.9 (12)
C6A—N1A—H1NA120.3 (11)C6B—N1B—H1NB120.5 (12)
N1A—N2A—C7A119.54 (11)N1B—N2B—C7B120.63 (11)
C2A—C1A—C6A118.63 (13)C2B—C1B—C6B118.34 (12)
C2A—C1A—C13A120.51 (12)C2B—C1B—C13B120.25 (12)
C6A—C1A—C13A120.86 (12)C6B—C1B—C13B121.42 (12)
C3A—C2A—C1A120.60 (13)C3B—C2B—C1B121.15 (12)
C3A—C2A—H2AA119.7C3B—C2B—H2BA119.4
C1A—C2A—H2AA119.7C1B—C2B—H2BA119.4
C4A—C3A—C2A119.87 (12)C2B—C3B—C4B119.61 (12)
C4A—C3A—H3AA120.1C2B—C3B—H3BA120.2
C2A—C3A—H3AA120.1C4B—C3B—H3BA120.2
C3A—C4A—C5A122.25 (13)C3B—C4B—C5B122.15 (12)
C3A—C4A—H4AA118.9C3B—C4B—H4BA118.9
C5A—C4A—H4AA118.9C5B—C4B—H4BA118.9
C4A—C5A—C6A116.83 (12)C4B—C5B—C6B116.98 (11)
C4A—C5A—C14A118.80 (12)C4B—C5B—C14B118.48 (11)
C6A—C5A—C14A124.37 (11)C6B—C5B—C14B124.54 (11)
C5A—C6A—C1A121.81 (11)C5B—C6B—C1B121.76 (11)
C5A—C6A—N1A124.07 (11)C5B—C6B—N1B123.48 (11)
C1A—C6A—N1A114.11 (12)C1B—C6B—N1B114.76 (11)
N2A—C7A—C8A124.19 (11)N2B—C7B—C8B123.97 (11)
N2A—C7A—C10A113.99 (11)N2B—C7B—C10B113.80 (11)
C8A—C7A—C10A121.82 (11)C8B—C7B—C10B122.23 (11)
O1A—C8A—C7A119.14 (11)O1B—C8B—C7B118.96 (11)
O1A—C8A—C9A118.76 (12)O1B—C8B—C9B119.06 (12)
C7A—C8A—C9A122.09 (11)C7B—C8B—C9B121.98 (12)
C8A—C9A—H9AA109.5C8B—C9B—H9BA109.5
C8A—C9A—H9AB109.5C8B—C9B—H9BB109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
C8A—C9A—H9AC109.5C8B—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
O2A—C10A—O3A122.70 (11)O2B—C10B—O3B122.89 (12)
O2A—C10A—C7A125.05 (12)O2B—C10B—C7B124.62 (12)
O3A—C10A—C7A112.25 (10)O3B—C10B—C7B112.48 (10)
O3A—C11A—C12A106.82 (10)O3B—C11B—C12B106.66 (10)
O3A—C11A—H11A110.4O3B—C11B—H11C110.4
C12A—C11A—H11A110.4C12B—C11B—H11C110.4
O3A—C11A—H11B110.4O3B—C11B—H11D110.4
C12A—C11A—H11B110.4C12B—C11B—H11D110.4
H11A—C11A—H11B108.6H11C—C11B—H11D108.6
C11A—C12A—H12A109.5C11B—C12B—H12D109.5
C11A—C12A—H12B109.5C11B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
C11A—C12A—H12C109.5C11B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
C1A—C13A—H13A109.5C1B—C13B—H13D109.5
C1A—C13A—H13B109.5C1B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
C1A—C13A—H13C109.5C1B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
C5A—C14A—H14A109.5C5B—C14B—H14D109.5
C5A—C14A—H14B109.5C5B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C5A—C14A—H14C109.5C5B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
C6A—N1A—N2A—C7A179.03 (12)C6B—N1B—N2B—C7B−179.54 (12)
C6A—C1A—C2A—C3A−0.2 (2)C6B—C1B—C2B—C3B−0.2 (2)
C13A—C1A—C2A—C3A179.61 (14)C13B—C1B—C2B—C3B179.80 (14)
C1A—C2A—C3A—C4A1.1 (2)C1B—C2B—C3B—C4B−0.2 (2)
C2A—C3A—C4A—C5A−0.8 (2)C2B—C3B—C4B—C5B0.1 (2)
C3A—C4A—C5A—C6A−0.3 (2)C3B—C4B—C5B—C6B0.3 (2)
C3A—C4A—C5A—C14A179.28 (13)C3B—C4B—C5B—C14B−179.27 (13)
C4A—C5A—C6A—C1A1.2 (2)C4B—C5B—C6B—C1B−0.78 (19)
C14A—C5A—C6A—C1A−178.33 (13)C14B—C5B—C6B—C1B178.79 (13)
C4A—C5A—C6A—N1A−178.53 (12)C4B—C5B—C6B—N1B179.62 (12)
C14A—C5A—C6A—N1A1.9 (2)C14B—C5B—C6B—N1B−0.8 (2)
C2A—C1A—C6A—C5A−1.0 (2)C2B—C1B—C6B—C5B0.7 (2)
C13A—C1A—C6A—C5A179.22 (13)C13B—C1B—C6B—C5B−179.29 (13)
C2A—C1A—C6A—N1A178.77 (12)C2B—C1B—C6B—N1B−179.62 (12)
C13A—C1A—C6A—N1A−1.02 (19)C13B—C1B—C6B—N1B0.34 (19)
N2A—N1A—C6A—C5A2.0 (2)N2B—N1B—C6B—C5B−2.4 (2)
N2A—N1A—C6A—C1A−177.74 (12)N2B—N1B—C6B—C1B178.02 (12)
N1A—N2A—C7A—C8A−0.6 (2)N1B—N2B—C7B—C8B0.9 (2)
N1A—N2A—C7A—C10A179.99 (11)N1B—N2B—C7B—C10B−179.37 (11)
N2A—C7A—C8A—O1A−0.6 (2)N2B—C7B—C8B—O1B−1.9 (2)
C10A—C7A—C8A—O1A178.82 (13)C10B—C7B—C8B—O1B178.34 (13)
N2A—C7A—C8A—C9A−179.80 (13)N2B—C7B—C8B—C9B177.42 (13)
C10A—C7A—C8A—C9A−0.4 (2)C10B—C7B—C8B—C9B−2.3 (2)
C11A—O3A—C10A—O2A0.89 (19)C11B—O3B—C10B—O2B−1.24 (19)
C11A—O3A—C10A—C7A−178.87 (11)C11B—O3B—C10B—C7B178.20 (11)
N2A—C7A—C10A—O2A178.94 (13)N2B—C7B—C10B—O2B178.42 (13)
C8A—C7A—C10A—O2A−0.5 (2)C8B—C7B—C10B—O2B−1.8 (2)
N2A—C7A—C10A—O3A−1.31 (16)N2B—C7B—C10B—O3B−1.00 (17)
C8A—C7A—C10A—O3A179.24 (12)C8B—C7B—C10B—O3B178.78 (12)
C10A—O3A—C11A—C12A179.37 (11)C10B—O3B—C11B—C12B−177.50 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2B—H2BA···O2Bi0.932.543.2442 (16)133
N1A—H1NA···O1A0.904 (18)1.790 (18)2.5366 (14)138.3 (15)
N1B—H1NB···O1B0.91 (2)1.81 (2)2.5512 (15)136.2 (16)
C11B—H11C···Cg1ii0.962.683.5516 (15)150
C11B—H11D···Cg1iii0.962.603.4832 (15)152
C11A—H11A···Cg2iv0.962.613.4633 (15)147
C11A—H11B···Cg2v0.962.653.5304 (15)151

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2; (v) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2373).

References

  • Alpaslan, G., Özdamar, O., Odabaşoğlu, M., Ersanlı, C. C., Erdönmez, A. & Ocak Ískeleli, N. (2005). Acta Cryst. E61, o3442–o3444.
  • Amir, M. & Agarwal, R. (1997). J. Indian Chem. Soc.74, 154–155.
  • Billington, D. C., Golding, B. T. & Primrose, S. B. (1979). Biochem. J.182, 827–836. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Fun, H.-K., Chantrapromma, S., Padaki, M., Radhika, & Isloor, A. M. (2009). Acta Cryst. E65, o1029. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stanchev, S., Momekov, G., Jensen, F. & Manolov, I. (2008). Eur. J. Med. Chem.43, 694–706. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography