PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m749.
Published online 2009 June 6. doi:  10.1107/S1600536809020972
PMCID: PMC2969437

catena-Poly[lead(II)-[μ-2,4-diamino-6-(piperidin-1-yl)pyrimidine N-oxide-κ2 O:O]di-μ-iodido]

Abstract

The N-oxide O atom of the minoxidil unit in the 1/1 adduct with lead(II) iodide, [PbI2(C9H15N5O)]n, bridges two PbII atoms, as do each of the I atoms. The bridging inter­actions give rise to a linear chain motif that propagates along the a axis of the ortho­rhom­bic unit cell. The coordination sphere around the six-coordinate PbII atom is a distorted ψ-monocapped octa­hedron in which the stereochemically active lone pair caps one of the faces defined by the O and I atoms forming the longer Pb—O or Pb—I bonds. The PbII atom lies on a mirror plane; the mirror plane is perpendicular to the pyrimidine ring and it bis­ects the piperidine ring. The aromatic ring is disordered about the mirror plane with respect to the 1-nitro­gen and 5-carbon atoms.

Related literature

For the crystal structure of minoxidil, see: Akama et al. (2004 [triangle]); Martín-Islán et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m749-scheme1.jpg

Experimental

Crystal data

  • [PbI2(C9H15N5O)]
  • M r = 670.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m749-efi1.jpg
  • a = 8.1010 (1) Å
  • b = 13.5126 (2) Å
  • c = 14.0140 (2) Å
  • V = 1534.05 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 15.02 mm−1
  • T = 140 K
  • 0.20 × 0.10 × 0.05 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.153, T max = 0.521 (expected range = 0.139–0.472)
  • 10101 measured reflections
  • 1837 independent reflections
  • 1752 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.043
  • S = 1.05
  • 1837 reflections
  • 91 parameters
  • H-atom parameters constrained
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.90 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020972/tk2471sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020972/tk2471Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank IROST and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

Minoxidil [6-(1-piperidinyl)-2,4-pyrimidinediamide 3-oxide) (0.10 g, 0.5 mmol), lead(II) acetate (0.17 g, 0.5 mmol) and potassium iodide (0.16 g, 1 mmol) were placed one arm of a two-arm glass tube. Methanol was added to fill both arms. The tube was sealed and the arm containing the reactants immersed in an oil bath at 333 K while the other arm was kept at ambient temperature. After 10 days, light-brown crystals deposited in the cooler arm. These were collected, washed with acetone and ether, and finally air dried.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino H-atoms were similarly treated (N–H 0.88 Å).

The minoxidil molecule is disordered about a mirror plane that is perpendicular to the pyrimidinyl ring; the mirror plane also bisects piperidinyl ring. In the aromatic ring, the nitrogen atom at the 1-position shares the same site as the carbon atom at the 5-position; this site was refined as half a nitrogen atom and half a C-H group. The short H2···H4a distance of 1.74 Å is an artifact of the disorder about a mirror plane.

Figures

Fig. 1.
Thermal ellisoid plot (Barbour, 2001) of the lead diiodide–minoxidil adduct extended to show the coordination geometries of two lead atoms of the linear chain formed in the crystal structure. Atoms comprising the asymmetric unit are labelled, ...

Crystal data

[PbI2(C9H15N5O)]F(000) = 1200
Mr = 670.25Dx = 2.902 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 5726 reflections
a = 8.1010 (1) Åθ = 2.9–28.3°
b = 13.5126 (2) ŵ = 15.02 mm1
c = 14.0140 (2) ÅT = 140 K
V = 1534.05 (4) Å3Prism, yellow
Z = 40.20 × 0.10 × 0.05 mm

Data collection

Bruker SMART APEX diffractometer1837 independent reflections
Radiation source: fine-focus sealed tube1752 reflections with I > 2σ(I)
graphiteRint = 0.028
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.153, Tmax = 0.521k = −17→17
10101 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0233P)2 + 1.8105P] where P = (Fo2 + 2Fc2)/3
1837 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = −0.90 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Pb10.55277 (2)0.75000.769395 (12)0.01565 (6)
I10.26714 (3)0.588041 (17)0.831700 (16)0.02101 (7)
O10.3482 (4)0.75000.6436 (2)0.0171 (7)
N10.3822 (5)0.75000.5481 (3)0.0137 (8)
N20.4236 (4)0.6615 (2)0.4053 (2)0.0184 (6)0.50
N30.3560 (4)0.5806 (2)0.5498 (2)0.0237 (7)
H310.35650.52260.52130.028*
H320.33400.58470.61120.028*
N40.4716 (6)0.75000.2638 (3)0.0187 (9)
C10.3887 (4)0.6625 (3)0.5000 (2)0.0183 (7)
C20.4236 (4)0.6615 (2)0.4053 (2)0.0184 (6)0.50
H20.43520.60070.37180.022*0.50
C30.4417 (6)0.75000.3590 (3)0.0173 (9)
C40.5041 (5)0.6591 (3)0.2101 (3)0.0224 (7)
H4A0.47320.60100.24930.027*
H4B0.62340.65440.19560.027*
C50.4058 (5)0.6583 (3)0.1176 (3)0.0280 (9)
H5A0.43670.59920.07980.034*
H5B0.28670.65350.13260.034*
C60.4363 (8)0.75000.0587 (4)0.0350 (14)
H6A0.55170.75000.03540.042*
H6B0.36210.75000.00260.042*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pb10.01521 (10)0.01598 (10)0.01577 (10)0.000−0.00072 (6)0.000
I10.02066 (14)0.01606 (12)0.02631 (12)−0.00058 (9)0.00187 (9)0.00768 (8)
O10.0150 (17)0.0263 (18)0.0099 (13)0.0000.0015 (12)0.000
N10.0143 (19)0.0163 (19)0.0105 (16)0.000−0.0019 (14)0.000
N20.0168 (16)0.0230 (17)0.0155 (14)−0.0007 (13)0.0001 (12)−0.0035 (12)
N30.0270 (17)0.0148 (15)0.0294 (15)−0.0038 (13)−0.0040 (13)−0.0053 (12)
N40.026 (2)0.018 (2)0.0118 (18)0.0000.0012 (16)0.000
C10.0145 (16)0.0208 (18)0.0197 (16)−0.0011 (14)−0.0007 (13)−0.0043 (13)
C20.0168 (16)0.0230 (17)0.0155 (14)−0.0007 (13)0.0001 (12)−0.0035 (12)
C30.014 (2)0.022 (2)0.016 (2)0.000−0.0009 (18)0.000
C40.0249 (19)0.0211 (18)0.0211 (16)0.0032 (16)0.0036 (15)−0.0038 (14)
C50.025 (2)0.036 (2)0.0226 (18)−0.0012 (17)−0.0035 (15)−0.0130 (16)
C60.039 (4)0.051 (4)0.014 (2)0.000−0.006 (2)0.000

Geometric parameters (Å, °)

Pb1—O12.419 (3)N4—C31.356 (6)
Pb1—O1i2.686 (3)N4—C41.464 (4)
Pb1—I13.3024 (3)N4—C4iii1.464 (4)
Pb1—I1ii3.1325 (3)C3—C2iii1.368 (4)
Pb1—I1i3.1325 (3)C3—N2iii1.368 (4)
Pb1—I1iii3.3024 (3)C4—C51.522 (5)
O1—N11.366 (5)C4—H4A0.9900
N1—C11.363 (4)C4—H4B0.9900
N1—C1iii1.363 (4)C5—C61.509 (5)
N2—C11.358 (4)C5—H5A0.9900
N2—C31.368 (4)C5—H5B0.9900
N3—C11.335 (4)C6—C5iii1.509 (5)
N3—H310.8800C6—H6A0.9900
N3—H320.8800C6—H6B0.9900
O1—Pb1—O1i160.22 (9)C4—N4—C4iii114.1 (4)
O1—Pb1—I1i92.88 (5)N3—C1—N2123.0 (3)
O1i—Pb1—I1i73.21 (5)N3—C1—N1116.9 (3)
O1—Pb1—I1ii92.88 (5)N2—C1—N1120.1 (3)
O1i—Pb1—I1ii73.21 (5)N4—C3—N2119.0 (2)
I1i—Pb1—I1ii88.636 (10)N4—C3—C2iii119.0 (2)
O1—Pb1—I173.30 (5)N2—C3—C2iii121.9 (4)
O1i—Pb1—I1120.29 (4)N4—C3—N2iii119.0 (2)
I1i—Pb1—I192.581 (7)N2—C3—N2iii121.9 (4)
I1ii—Pb1—I1166.169 (8)C2iii—C3—N2iii0.0 (3)
O1—Pb1—I1iii73.30 (5)N4—C4—C5110.5 (3)
O1i—Pb1—I1iii120.29 (4)N4—C4—H4A109.6
I1i—Pb1—I1iii166.169 (8)C5—C4—H4A109.6
I1ii—Pb1—I1iii92.581 (7)N4—C4—H4B109.6
I1—Pb1—I1iii83.011 (9)C5—C4—H4B109.6
Pb1iv—I1—Pb178.806 (5)H4A—C4—H4B108.1
N1—O1—Pb1125.2 (3)C6—C5—C4112.0 (4)
N1—O1—Pb1iv128.6 (3)C6—C5—H5A109.2
Pb1—O1—Pb1iv106.25 (11)C4—C5—H5A109.2
O1—N1—C1119.5 (2)C6—C5—H5B109.2
O1—N1—C1iii119.5 (2)C4—C5—H5B109.2
C1—N1—C1iii120.5 (4)H5A—C5—H5B107.9
C1—N2—C3118.5 (3)C5iii—C6—C5110.4 (4)
C1—N3—H31120.0C5iii—C6—H6A109.6
C1—N3—H32120.0C5—C6—H6A109.6
H31—N3—H32120.0C5iii—C6—H6B109.6
C3—N4—C4122.51 (19)C5—C6—H6B109.6
C3—N4—C4iii122.51 (19)H6A—C6—H6B108.1
O1—Pb1—I1—Pb1iv−35.49 (5)C3—N2—C1—N3174.6 (4)
O1i—Pb1—I1—Pb1iv160.24 (6)C3—N2—C1—N1−3.9 (5)
I1i—Pb1—I1—Pb1iv−127.726 (10)O1—N1—C1—N31.9 (5)
I1ii—Pb1—I1—Pb1iv−32.94 (2)C1iii—N1—C1—N3−169.9 (3)
I1iii—Pb1—I1—Pb1iv39.115 (7)O1—N1—C1—N2−179.5 (3)
O1i—Pb1—O1—N10.000 (2)C1iii—N1—C1—N28.7 (7)
I1i—Pb1—O1—N1−44.389 (6)C4—N4—C3—N2−7.1 (7)
I1ii—Pb1—O1—N144.389 (6)C4iii—N4—C3—N2−175.6 (4)
I1—Pb1—O1—N1−136.222 (16)C4—N4—C3—C2iii175.6 (4)
I1iii—Pb1—O1—N1136.222 (17)C4iii—N4—C3—C2iii7.1 (7)
O1i—Pb1—O1—Pb1iv180.0C4—N4—C3—N2iii175.6 (4)
I1i—Pb1—O1—Pb1iv135.611 (6)C4iii—N4—C3—N2iii7.1 (7)
I1ii—Pb1—O1—Pb1iv−135.611 (6)C1—N2—C3—N4−178.0 (4)
I1—Pb1—O1—Pb1iv43.778 (16)C1—N2—C3—C2iii−0.8 (7)
I1iii—Pb1—O1—Pb1iv−43.778 (16)C1—N2—C3—N2iii−0.8 (7)
Pb1—O1—N1—C194.1 (3)C3—N4—C4—C5134.8 (5)
Pb1iv—O1—N1—C1−85.9 (3)C4iii—N4—C4—C5−55.8 (6)
Pb1—O1—N1—C1iii−94.1 (3)N4—C4—C5—C654.1 (5)
Pb1iv—O1—N1—C1iii85.9 (3)C4—C5—C6—C5iii−53.5 (6)

Symmetry codes: (i) x+1/2, y, −z+3/2; (ii) x+1/2, −y+3/2, −z+3/2; (iii) x, −y+3/2, z; (iv) x−1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2471).

References

  • Akama, H., Haramura, M., Tanaka, A., Akimoto, T. & Hirayama, N. (2004). Anal. Sci.20, 29–30.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Martín-Islán, A. P., Martín-Ramos, D. & Sainz-Díaz, C. I. (2008). J. Pharm. Sci.97, 815–830. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography