PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m741–m742.
Published online 2009 June 6. doi:  10.1107/S1600536809020170
PMCID: PMC2969434

Bis[bis­(1,10-phenanthroline-κ2 N,N′)copper(I)] μ6-oxido-dodeca­kis-μ2-oxido-hexa­oxidohexa­tungsten(VI)

Abstract

The title compound, [Cu(C12H8N2)2]2[W6O19], consists of two [Cu(phen)2]+ cations (phen = 1,10-phenanthroline) and one typical [W6O19]2− isopolyanion. The CuI atom is coordinated by four N atoms from two bidentate chelating phen ligands in a distorted tetra­hedral geometry. The hexa­tungstate anion, lying on an inversion center and possessing the well known Lindqvist structure, is formed by six edge-sharing WO6 octa­hedra, thus exhibiting an approximate Oh symmetry. Three kinds of O atoms exist in the hexa­tungstate, viz. terminal Oa, bridging Ob and central Oc atoms. Besides the electrostatic effects between the anions and cations, weak C—H(...)O hydrogen bonds exist between the phen ligands and Oa or Ob atoms. The mean inter­planar distances of 3.485 (1) and 3.344 (1) Å indicate π–π stacking inter­actions between neighboring phen ligands. These weak hydrogen bonds and π–π stacking inter­actions lead to a two-dimensional network.

Related literature

For general background to hexa­tungstate compounds, see: Khan et al. (1998 [triangle]); Meng et al. (2006 [triangle]); Zhang et al. (2004 [triangle]). For related structures, see: Li & Zhang (2008 [triangle]); Zhang (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m741-scheme1.jpg

Experimental

Crystal data

  • [Cu(C12H8N2)2]2[W6O19]
  • M r = 2255.00
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m741-efi1.jpg
  • a = 10.364 (2) Å
  • b = 11.772 (2) Å
  • c = 11.899 (2) Å
  • α = 108.603 (3)°
  • β = 102.151 (3)°
  • γ = 100.694 (3)°
  • V = 1294.0 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 14.17 mm−1
  • T = 290 K
  • 0.19 × 0.16 × 0.07 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.09, T max = 0.39
  • 7111 measured reflections
  • 4932 independent reflections
  • 3737 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.157
  • S = 1.00
  • 4932 reflections
  • 376 parameters
  • H-atom parameters constrained
  • Δρmax = 2.72 e Å−3
  • Δρmin = −4.78 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809020170/hy2197sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020170/hy2197Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Jinhun Municipal Science and Technology (grant No. 2003-01-179).

supplementary crystallographic information

Comment

Organic–inorganic hybrid compounds comprise hexatungstate and organic components (Khan et al., 1998; Meng et al., 2006; Zhang et al., 2004). In this context, we have studied and reported the crystal structures of dodecahydroxydodecatungsten henicosahydrate (Li & Zhang, 2008) and hexakis(3-hydroxo)tetra(2-hydroxo)octadeca(2-oxo)tetradecaoxodisodium(I) dodecatungsten dodecahydrate (Zhang, 2008). In this paper, we report the synthesis and structure of the title complex, [Cu(phen)2]2[W6O19].

The analysis of crystal structure shows that the title organic–inorganic hybrid compound consists of one hexatungstate cluster anion (W6O19)2- and two monovalent coordination cations [Cu(phen)2]+ (Fig. 1). In the [Cu(phen)2]+ cation, the CuI atom is coordinated by four N atoms from two bidentate chelating phen ligands in a distorted tetrahedral geometry (Table 1). The dihedral angle of the two phen ligands is 104.9 (2)°, and the bond distances of Cu—N are in the range of 2.007 (11)—2.050 (12) Å. The hexatungstate (W6O19)2- anion, lying on an inversion center and possessing the well-known lindqvist structure, is formed by six edge-sharing WO6 octahedra, thus exhibiting an approximate Oh symmetry. Three kinds of O atoms exist in the hexatungstate, the ending Oa (O2, O4, O7), the bridging Ob (O1, O3, O5, O6, O8, O9) and the central Oc (O10) atoms. The bond lengths of W—O are obviously different, d(W—Oa) = 1.672 (9)—1.691 (11)Å, d(W—Ob) = 1.904 (10)—1.941 (9)Å, and d(W—Oc) = 2.3139 (6)—2.3392 (6)Å. As we can see, the lengths of W—Oc are the longest and the W—Oa shortest. Besides the electrostatic effects between the anions and cations, the weak C—H···O hydrogen bonds exist between the phen ligands and Oa or Ob atoms (Fig.1, Fig.2, Fig.3 and Table 2). The mean interplanar distances of 3.485 (1) and 3.344 (1)Å indicate π–π stacking interactions between the neighboring phen ligands. These weak hydrogen bonds and π–π stacking interactions lead to a two-dimensional network.

Experimental

A mixture of CuCO3 (0.124 g, 1.00 mmol), phen.H2O (0.050 g, 0.50 mmol), 2-chlorobenzoic acid (0.043 g, 0.25 mmol) and freshly prepared (NH4)2(WO2S2) (0.086 g, 0.27 mmol) in a ratio of 4:2:1:1 was added to CH3OH/H2O (1:2, v/v) mixed solution. After stirring for 2 h, the brown suspension obtained was sealed in a 50 ml Teflon-lined stainless steel vessel (degree of filling: 40%), heated to 393 K for 7 d and then naturally cooled to room temperature. The red crystals were collected, then washed with distilled water and dried in air.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The largest peak in the final difference Fourier map is 0.96 Å from atom W3 and the deepest hole is 0.91 Å from atom W1.

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The π–π stacking interactions (dashed double arrows), with the mean interplanar distance of 3.485 (1) Å, and C—H···O hydrogen bonds (dashed lines) in the title compound.
Fig. 3.
The π–π stacking interactions (dashed double arrows), with the mean interplanar distance of 3.344 (1) Å, and C—H···O hydrogen bonds (dashed lines) in the title compound.

Crystal data

[Cu(C12H8N2)2]2[W6O19]Z = 1
Mr = 2255.00F(000) = 1030
Triclinic, P1Dx = 2.894 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.364 (2) ÅCell parameters from 226 reflections
b = 11.772 (2) Åθ = 1.9–26.0°
c = 11.899 (2) ŵ = 14.17 mm1
α = 108.603 (3)°T = 290 K
β = 102.151 (3)°Block, red
γ = 100.694 (3)°0.19 × 0.16 × 0.07 mm
V = 1294.0 (4) Å3

Data collection

Bruker SMART APEX CCD diffractometer4932 independent reflections
Radiation source: fine-focus sealed tube3737 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.09, Tmax = 0.39k = −14→14
7111 measured reflectionsl = −7→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.1032P)2] where P = (Fo2 + 2Fc2)/3
4932 reflections(Δ/σ)max = 0.001
376 parametersΔρmax = 2.72 e Å3
0 restraintsΔρmin = −4.78 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.3440 (2)0.17655 (17)0.7772 (2)0.0595 (5)
W10.99864 (5)0.40295 (4)0.64114 (5)0.03513 (18)
W20.79637 (5)0.54681 (4)0.52487 (5)0.03706 (19)
W31.12578 (5)0.68912 (4)0.66080 (5)0.03581 (18)
O10.8370 (8)0.4620 (8)0.6363 (8)0.0341 (19)
O20.6510 (10)0.5825 (9)0.5417 (12)0.059 (3)
O30.8394 (10)0.6130 (8)0.4065 (11)0.050 (3)
O40.9960 (11)0.3340 (9)0.7445 (10)0.051 (3)
O51.2619 (9)0.6145 (8)0.6099 (10)0.045 (2)
O60.9382 (9)0.6879 (8)0.6456 (9)0.041 (2)
O71.2177 (11)0.8247 (9)0.7782 (11)0.061 (3)
O81.1010 (8)0.7305 (7)0.5155 (8)0.035 (2)
O91.0969 (9)0.5744 (8)0.7415 (9)0.039 (2)
O101.00000.50000.50000.031 (3)
N10.2642 (13)0.0765 (10)0.5929 (13)0.048 (3)
N20.4498 (12)0.0484 (10)0.7689 (11)0.044 (3)
N30.2306 (12)0.2179 (10)0.8990 (12)0.047 (3)
N40.3947 (12)0.3613 (10)0.8196 (10)0.042 (3)
C10.178 (2)0.0906 (14)0.504 (2)0.068 (5)
H10.13850.15600.52680.082*
C20.142 (2)0.0199 (17)0.385 (2)0.080 (6)
H20.07730.03440.32780.096*
C30.2024 (16)−0.0766 (14)0.3453 (16)0.056 (4)
H30.1787−0.12680.26180.068*
C40.2968 (15)−0.0962 (12)0.4310 (14)0.044 (3)
C50.3614 (17)−0.1966 (13)0.4029 (16)0.054 (4)
H50.3440−0.24880.32080.065*
C60.4458 (16)−0.2159 (13)0.4929 (15)0.050 (4)
H60.4824−0.28350.47240.060*
C70.4805 (13)−0.1353 (11)0.6187 (14)0.039 (3)
C80.5707 (16)−0.1458 (14)0.7184 (18)0.058 (4)
H80.6135−0.20950.70220.069*
C90.5981 (17)−0.0672 (16)0.8371 (18)0.062 (4)
H90.6565−0.07720.90210.075*
C100.5340 (17)0.0312 (14)0.8582 (16)0.055 (4)
H100.55230.08650.93910.066*
C110.4206 (14)−0.0325 (12)0.6521 (14)0.043 (3)
C120.3243 (13)−0.0200 (11)0.5541 (15)0.044 (4)
C130.1527 (18)0.1470 (15)0.9380 (15)0.057 (4)
H130.14580.06220.90880.069*
C140.082 (2)0.189 (2)1.017 (2)0.081 (6)
H140.02930.13421.04180.097*
C150.0890 (16)0.3146 (17)1.0626 (15)0.059 (4)
H150.04070.34521.11780.071*
C160.1710 (13)0.3947 (13)1.0228 (14)0.044 (3)
C170.1811 (16)0.5272 (16)1.0604 (14)0.058 (4)
H170.13430.56361.11450.069*
C180.2586 (16)0.5961 (14)1.0160 (15)0.058 (4)
H180.26390.68051.04040.069*
C190.3338 (14)0.5465 (12)0.9329 (15)0.046 (4)
C200.4137 (14)0.6171 (12)0.8855 (14)0.048 (4)
H200.42010.70150.90610.058*
C210.4822 (15)0.5605 (13)0.8086 (14)0.048 (3)
H210.53720.60560.77620.057*
C220.4684 (16)0.4334 (14)0.7791 (13)0.047 (3)
H220.51590.39670.72590.056*
C230.3262 (14)0.4188 (12)0.8966 (14)0.040 (3)
C240.2409 (14)0.3435 (12)0.9414 (13)0.040 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0742 (13)0.0385 (9)0.0669 (13)0.0301 (9)0.0312 (11)0.0058 (10)
W10.0357 (3)0.0281 (3)0.0464 (4)0.0106 (2)0.0163 (2)0.0163 (3)
W20.0287 (3)0.0320 (3)0.0566 (4)0.0150 (2)0.0205 (3)0.0157 (3)
W30.0350 (3)0.0243 (3)0.0448 (3)0.0056 (2)0.0146 (2)0.0081 (2)
O10.035 (4)0.039 (5)0.043 (5)0.012 (4)0.024 (4)0.025 (4)
O20.042 (6)0.050 (6)0.094 (9)0.026 (5)0.032 (6)0.023 (6)
O30.045 (5)0.032 (5)0.076 (7)0.013 (4)0.019 (5)0.020 (5)
O40.057 (6)0.039 (5)0.063 (7)0.013 (4)0.033 (5)0.018 (5)
O50.032 (5)0.033 (4)0.064 (7)0.004 (4)0.009 (4)0.015 (5)
O60.038 (5)0.031 (4)0.055 (6)0.013 (4)0.026 (4)0.009 (4)
O70.061 (6)0.037 (5)0.077 (8)0.003 (5)0.030 (6)0.009 (6)
O80.036 (5)0.027 (4)0.039 (5)0.004 (3)0.008 (4)0.010 (4)
O90.042 (5)0.030 (4)0.045 (5)0.007 (4)0.018 (4)0.013 (4)
O100.016 (5)0.024 (5)0.052 (8)0.010 (4)0.011 (5)0.010 (6)
N10.050 (7)0.034 (6)0.067 (9)0.025 (5)0.022 (7)0.014 (6)
N20.051 (7)0.037 (6)0.046 (7)0.023 (5)0.022 (6)0.006 (6)
N30.048 (7)0.037 (6)0.058 (8)0.017 (5)0.019 (6)0.013 (6)
N40.051 (7)0.032 (5)0.035 (6)0.019 (5)0.005 (5)0.003 (5)
C10.073 (12)0.034 (8)0.090 (15)0.007 (8)0.036 (11)0.008 (10)
C20.066 (11)0.065 (12)0.110 (18)0.018 (9)−0.004 (11)0.051 (14)
C30.066 (10)0.037 (8)0.059 (10)0.003 (7)0.022 (9)0.012 (8)
C40.053 (8)0.027 (6)0.050 (9)0.000 (6)0.025 (7)0.014 (7)
C50.074 (11)0.034 (7)0.062 (10)0.010 (7)0.048 (9)0.010 (8)
C60.063 (9)0.037 (7)0.068 (11)0.028 (7)0.046 (9)0.017 (8)
C70.039 (7)0.022 (6)0.063 (9)0.009 (5)0.030 (7)0.013 (6)
C80.052 (9)0.048 (8)0.090 (14)0.031 (7)0.035 (9)0.027 (10)
C90.062 (10)0.064 (10)0.072 (12)0.024 (8)0.017 (9)0.037 (10)
C100.071 (11)0.045 (8)0.053 (10)0.023 (7)0.026 (9)0.011 (8)
C110.047 (8)0.029 (6)0.062 (9)0.012 (5)0.033 (7)0.018 (7)
C120.039 (7)0.025 (6)0.080 (11)0.015 (5)0.036 (7)0.019 (7)
C130.075 (11)0.043 (8)0.047 (9)0.018 (8)0.012 (8)0.010 (8)
C140.085 (14)0.088 (14)0.109 (17)0.035 (11)0.059 (13)0.061 (14)
C150.055 (9)0.088 (12)0.050 (10)0.035 (9)0.032 (8)0.025 (10)
C160.035 (7)0.046 (8)0.046 (8)0.021 (6)0.011 (6)0.007 (7)
C170.055 (9)0.068 (10)0.043 (9)0.031 (8)0.024 (8)−0.005 (8)
C180.058 (9)0.041 (8)0.059 (10)0.027 (7)0.012 (8)−0.004 (8)
C190.042 (7)0.031 (7)0.057 (10)0.018 (6)0.012 (7)0.002 (7)
C200.052 (8)0.029 (7)0.053 (9)0.008 (6)0.001 (7)0.012 (7)
C210.058 (9)0.040 (7)0.047 (9)0.022 (7)0.016 (7)0.013 (7)
C220.064 (9)0.053 (9)0.031 (8)0.031 (7)0.016 (7)0.016 (7)
C230.041 (7)0.038 (7)0.046 (8)0.023 (6)0.014 (6)0.013 (7)
C240.050 (8)0.034 (6)0.035 (7)0.022 (6)0.008 (6)0.008 (6)

Geometric parameters (Å, °)

Cu1—N12.027 (14)C3—H30.9300
Cu1—N22.013 (11)C4—C121.39 (2)
Cu1—N32.050 (12)C4—C51.45 (2)
Cu1—N42.007 (11)C5—C61.34 (2)
W1—O41.678 (10)C5—H50.9300
W1—O3i1.904 (10)C6—C71.42 (2)
W1—O11.926 (8)C6—H60.9300
W1—O91.929 (9)C7—C81.40 (2)
W1—O8i1.931 (8)C7—C111.444 (18)
W1—O102.3139 (6)C8—C91.35 (2)
W2—O21.672 (9)C8—H80.9300
W2—O31.904 (11)C9—C101.42 (2)
W2—O61.915 (9)C9—H90.9300
W2—O11.923 (8)C10—H100.9300
W2—O5i1.941 (9)C11—C121.43 (2)
W2—O102.3314 (6)C13—C141.34 (2)
W3—O71.691 (11)C13—H130.9300
W3—O51.899 (10)C14—C151.38 (3)
W3—O91.907 (9)C14—H140.9300
W3—O61.912 (9)C15—C161.41 (2)
W3—O81.921 (9)C15—H150.9300
W3—O102.3392 (6)C16—C241.383 (19)
N1—C11.31 (2)C16—C171.46 (2)
N1—C121.393 (15)C17—C181.34 (2)
N2—C101.321 (19)C17—H170.9300
N2—C111.342 (18)C18—C191.43 (2)
N3—C131.310 (19)C18—H180.9300
N3—C241.377 (17)C19—C201.39 (2)
N4—C221.308 (18)C19—C231.407 (18)
N4—C231.363 (17)C20—C211.36 (2)
C1—C21.33 (3)C20—H200.9300
C1—H10.9300C21—C221.39 (2)
C2—C31.40 (3)C21—H210.9300
C2—H20.9300C22—H220.9300
C3—C41.37 (2)C23—C241.436 (19)
N4—Cu1—N2134.8 (5)C13—N3—C24118.4 (13)
N4—Cu1—N1113.4 (5)C13—N3—Cu1131.6 (10)
N2—Cu1—N183.1 (5)C24—N3—Cu1110.1 (10)
N4—Cu1—N383.3 (5)C22—N4—C23115.1 (11)
N2—Cu1—N3122.9 (5)C22—N4—Cu1132.8 (10)
N1—Cu1—N3124.7 (5)C23—N4—Cu1111.7 (9)
O4—W1—O3i105.4 (5)N1—C1—C2125.8 (17)
O4—W1—O1102.4 (4)N1—C1—H1117.1
O3i—W1—O1152.1 (4)C2—C1—H1117.1
O4—W1—O9103.8 (5)C1—C2—C3119.4 (18)
O3i—W1—O987.0 (4)C1—C2—H2120.3
O1—W1—O984.9 (4)C3—C2—H2120.3
O4—W1—O8i103.6 (4)C4—C3—C2119.1 (16)
O3i—W1—O8i86.7 (4)C4—C3—H3120.5
O1—W1—O8i88.4 (4)C2—C3—H3120.5
O9—W1—O8i152.6 (4)C3—C4—C12117.3 (14)
O4—W1—O10179.0 (4)C3—C4—C5124.4 (14)
O3i—W1—O1075.4 (3)C12—C4—C5118.2 (14)
O1—W1—O1076.7 (2)C6—C5—C4121.2 (14)
O9—W1—O1075.8 (3)C6—C5—H5119.4
O8i—W1—O1076.8 (2)C4—C5—H5119.4
O2—W2—O3104.0 (5)C5—C6—C7121.4 (13)
O2—W2—O6104.2 (5)C5—C6—H6119.3
O3—W2—O685.8 (4)C7—C6—H6119.3
O2—W2—O1104.6 (5)C8—C7—C6125.5 (13)
O3—W2—O1151.4 (4)C8—C7—C11114.8 (13)
O6—W2—O186.5 (4)C6—C7—C11119.8 (14)
O2—W2—O5i105.0 (5)C9—C8—C7122.9 (14)
O3—W2—O5i85.8 (4)C9—C8—H8118.6
O6—W2—O5i150.8 (4)C7—C8—H8118.6
O1—W2—O5i87.6 (4)C8—C9—C10117.1 (16)
O2—W2—O10178.9 (4)C8—C9—H9121.4
O3—W2—O1075.0 (3)C10—C9—H9121.4
O6—W2—O1075.4 (3)N2—C10—C9123.5 (15)
O1—W2—O1076.4 (2)N2—C10—H10118.3
O5i—W2—O1075.4 (3)C9—C10—H10118.3
O7—W3—O5103.7 (5)N2—C11—C12119.9 (12)
O7—W3—O9103.7 (5)N2—C11—C7123.1 (14)
O5—W3—O987.3 (4)C12—C11—C7117.0 (13)
O7—W3—O6105.1 (5)C4—C12—N1123.4 (15)
O5—W3—O6151.2 (4)C4—C12—C11122.2 (12)
O9—W3—O686.1 (4)N1—C12—C11114.4 (13)
O7—W3—O8104.4 (5)N3—C13—C14124.0 (16)
O5—W3—O887.2 (4)N3—C13—H13118.0
O9—W3—O8151.9 (4)C14—C13—H13118.0
O6—W3—O885.6 (4)C13—C14—C15120.0 (17)
O7—W3—O10179.2 (4)C13—C14—H14120.0
O5—W3—O1075.9 (3)C15—C14—H14120.0
O9—W3—O1075.6 (3)C14—C15—C16118.1 (15)
O6—W3—O1075.3 (3)C14—C15—H15120.9
O8—W3—O1076.3 (2)C16—C15—H15120.9
W2—O1—W1117.0 (4)C24—C16—C15118.1 (13)
W2—O3—W1i119.4 (5)C24—C16—C17119.0 (14)
W3—O5—W2i118.7 (4)C15—C16—C17122.9 (14)
W3—O6—W2119.3 (4)C18—C17—C16119.1 (13)
W3—O8—W1i117.0 (4)C18—C17—H17120.5
W3—O9—W1118.4 (5)C16—C17—H17120.5
W1—O10—W1i180.000 (1)C17—C18—C19123.5 (13)
W1—O10—W289.885 (19)C17—C18—H18118.3
W1i—O10—W290.115 (19)C19—C18—H18118.3
W1—O10—W2i90.115 (19)C20—C19—C23118.0 (14)
W1i—O10—W2i89.885 (19)C20—C19—C18123.8 (13)
W2—O10—W2i180.00 (3)C23—C19—C18118.2 (14)
W1—O10—W390.18 (2)C21—C20—C19118.8 (12)
W1i—O10—W389.82 (2)C21—C20—H20120.6
W2—O10—W389.97 (2)C19—C20—H20120.6
W2i—O10—W390.03 (2)C20—C21—C22118.7 (14)
W1—O10—W3i89.82 (2)C20—C21—H21120.7
W1i—O10—W3i90.18 (2)C22—C21—H21120.7
W2—O10—W3i90.03 (2)N4—C22—C21125.8 (14)
W2i—O10—W3i89.97 (2)N4—C22—H22117.1
W3—O10—W3i180.00 (2)C21—C22—H22117.1
C1—N1—C12115.1 (14)N4—C23—C19123.7 (13)
C1—N1—Cu1133.2 (10)N4—C23—C24117.5 (11)
C12—N1—Cu1111.5 (10)C19—C23—C24118.8 (13)
C10—N2—C11118.6 (12)N3—C24—C16121.4 (13)
C10—N2—Cu1130.3 (10)N3—C24—C23117.2 (12)
C11—N2—Cu1111.0 (10)C16—C24—C23121.4 (12)
O6—W2—O1—W1−77.3 (5)O3—W2—O6—W3−76.6 (6)
O5i—W2—O1—W174.1 (5)O1—W2—O6—W375.8 (5)
O3i—W1—O1—W24.5 (11)O5i—W2—O6—W3−3.0 (12)
O9—W1—O1—W278.0 (5)O10—W2—O6—W3−1.0 (4)
O8i—W1—O1—W2−75.4 (5)O7—W3—O8—W1i179.1 (5)
O6—W2—O3—W1i75.4 (6)O5—W3—O8—W1i75.6 (5)
O5i—W2—O3—W1i−76.6 (6)O9—W3—O8—W1i−3.3 (11)
O9—W3—O5—W2i76.2 (6)O6—W3—O8—W1i−76.5 (5)
O6—W3—O5—W2i−0.6 (12)O7—W3—O9—W1−178.3 (5)
O8—W3—O5—W2i−76.3 (6)O5—W3—O9—W1−74.9 (5)
O7—W3—O6—W2−178.3 (6)O6—W3—O9—W177.1 (5)
O9—W3—O6—W2−75.1 (6)O4—W1—O9—W3179.6 (5)
O8—W3—O6—W278.1 (5)O3i—W1—O9—W374.5 (6)
O2—W2—O6—W3180.0 (6)O1—W1—O9—W3−78.9 (5)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O3ii0.932.533.36 (2)149
C17—H17···O4iii0.932.523.45 (2)178
C15—H15···O9iii0.932.493.43 (1)178

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2197).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Khan, M. I., Cevik, S., Doedens, R. J., Chen, Q., Li, S. C. & O’Connor, C. J. (1998). Inorg. Chim. Acta, 277, 69–75.
  • Li, Z.-F. & Zhang, B.-S. (2008). Z. Kristallogr. New Cryst. Struct.223, 191–193.
  • Meng, F. X., Liu, K. & Chen, Y. G. (2006). Chin. J. Struct. Chem.25, 837–843.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, B.-S. (2008). Z. Kristallogr. New Cryst. Struct.223, 317–318.
  • Zhang, L. J., Wei, Y. G., Wang, C. C., Guo, H. Y. & Wang, P. (2004). J. Solid State Chem 177, 3433–3438.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography