PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1642.
Published online 2009 June 20. doi:  10.1107/S1600536809022752
PMCID: PMC2969429

2,4-Dichloro-N-o-tolyl­benzamide

Abstract

In the title compound, C14H11Cl2NO, the central C—C(O)—N—C amide unit makes dihedral angles of 68.71 (11) and 54.92 (12)°, respectively, with the dichloro­benzene and tolyl rings. The two aromatic rings are inclined at 16.25 (17)°. In the crystal, N—H(...)O hydrogen bonds link mol­ecules into zigzag chains propagating in [001]. C—H(...)Cl contacts link these chains and additional C—H(...)O contacts generate stacks down b. Weak C—H(...)π and C—Cl(...)π inter­actions [Cl(...)centroid distance = 3.5422 (15) Å] may also stabilize the structure.

Related literature

For the biological activity of benzamide derivatives, see: Saeed et al. (2008a [triangle]). For related structures, see: Gowda et al. (2008 [triangle]); Saeed et al. (2008b [triangle]); Zhou & Zheng (2007 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1642-scheme1.jpg

Experimental

Crystal data

  • C14H11Cl2NO
  • M r = 280.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1642-efi1.jpg
  • a = 22.517 (4) Å
  • b = 6.0405 (9) Å
  • c = 9.6332 (17) Å
  • β = 104.838 (9)°
  • V = 1266.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.50 mm−1
  • T = 92 K
  • 0.46 × 0.27 × 0.19 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.615, T max = 0.91
  • 9889 measured reflections
  • 3475 independent reflections
  • 3195 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.158
  • S = 1.15
  • 3475 reflections
  • 164 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 1.36 e Å−3
  • Δρmin = −0.62 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1248 Friedel pairs
  • Flack parameter: 0.05 (8)

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and TITAN2000 (Hunter & Simpson, 1999 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 [triangle]), PLATON (Spek, 2009 [triangle]) and publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022752/tk2478sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022752/tk2478Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Otago for purchase of the diffractometer.

supplementary crystallographic information

Comment

The biological activity and applications of benzamide derivatives have been described in an earlier paper (Saeed et al. 2008a). In the title compound, (I) & Fig. 1, the central C2–C1(O1)–N1–C8 amide unit makes dihedral angles of 68.71 (11) ° and 54.92 (12) ° with the C2···C7 and C8···C13 rings, respectively. The two aromatic rings are inclined at 16.25 (17)°. Bond distances within the molecule are normal (Allen et al. 1987) and similar to those observed in comparable structures (Gowda et al. 2008; Saeed et al. 2008b; Zhou & Zheng 2007). In the crystal, N1—H1···O1 hydrogen bonds link molecules into zig-zag chains down the c axis; Table 1 & Fig. 2. C11—H11···Cl2 contacts link these chains and additional C6—H6···O1 contacts generate three-dimensional stacks down b, Fig. 3. C14—H14···π and Cl1···π interactions (Cl···Cg1 distance 3.5422 (15) Å; Cg1 is the centroid of the C2···C7 ring) may also stabilize the structure.

Experimental

2,4-Dichlorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 2-methylaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq. 1 M HCl and saturated aq. NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded (I) (81%) as colourless crystals: Anal. calcd. for C14H11Cl2NO: C 60.02, H 3.96, N 5.00%; found: C 60.05, H 3.97, N 4.97%.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.5Ueq (C) for CH3 atoms and 0.88 Å, Uiso = 1.2Ueq (N) for the NH group. In the final electron density maps, peaks in excess of 1.0 e Å-3 were found approximately 0.8 Å from both Cl atoms but no obvious chemical significance could be attached to them; there was no obvious evidence for disorder involving the Cl atoms.

Figures

Fig. 1.
The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
Fig. 2.
Zig-zag chains of (I) down the c axis. Dashed lines indicate N—H···O hydrogen bonds and C—H···Cl contacts.
Fig. 3.
Crystal packing of (I) viewed down the b axis. Dashed lines indicate N—H···O hydrogen bonds as well as C—H···O and C—H···Cl contacts.

Crystal data

C14H11Cl2NOF(000) = 576
Mr = 280.14Dx = 1.469 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5253 reflections
a = 22.517 (4) Åθ = 2.2–32.4°
b = 6.0405 (9) ŵ = 0.50 mm1
c = 9.6332 (17) ÅT = 92 K
β = 104.838 (9)°Block, colourless
V = 1266.6 (4) Å30.46 × 0.27 × 0.19 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer3475 independent reflections
Radiation source: fine-focus sealed tube3195 reflections with I > 2σ(I)
graphiteRint = 0.043
ω scansθmax = 33.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2006)h = −34→33
Tmin = 0.615, Tmax = 0.91k = −9→8
9889 measured reflectionsl = −12→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.158w = 1/[σ2(Fo2) + (0.0952P)2 + 1.0992P] where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
3475 reflectionsΔρmax = 1.36 e Å3
164 parametersΔρmin = −0.62 e Å3
2 restraintsAbsolute structure: Flack (1983), 1248 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.05 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.16543 (13)0.5847 (4)0.3277 (3)0.0250 (5)
C10.17020 (14)0.5816 (5)0.2022 (3)0.0185 (5)
C20.22063 (13)0.7094 (5)0.1617 (3)0.0172 (5)
C30.28213 (14)0.6506 (5)0.2168 (3)0.0173 (5)
Cl10.30103 (4)0.41955 (12)0.32639 (7)0.02356 (18)
C40.32950 (13)0.7736 (5)0.1848 (3)0.0178 (5)
H40.37120.73110.22120.021*
C50.31386 (14)0.9607 (5)0.0978 (3)0.0184 (5)
Cl20.37258 (4)1.11763 (13)0.06163 (7)0.02513 (18)
C60.25310 (15)1.0223 (5)0.0405 (3)0.0211 (5)
H60.24331.1492−0.01920.025*
C70.20711 (15)0.8956 (5)0.0719 (3)0.0202 (6)
H70.16540.93550.03190.024*
N10.13248 (12)0.4699 (5)0.0939 (3)0.0197 (5)
H10.13650.48940.00630.024*
C80.08611 (13)0.3210 (5)0.1147 (3)0.0191 (5)
C90.10239 (14)0.1560 (5)0.2194 (3)0.0218 (6)
H90.14350.14580.27620.026*
C100.05858 (17)0.0073 (6)0.2407 (4)0.0272 (7)
H100.0696−0.10410.31230.033*
C11−0.00132 (17)0.0223 (6)0.1568 (4)0.0291 (7)
H11−0.0316−0.07800.17190.035*
C12−0.01736 (15)0.1832 (6)0.0507 (4)0.0261 (6)
H12−0.05840.1889−0.00750.031*
C130.02600 (14)0.3385 (5)0.0276 (3)0.0203 (5)
C140.00831 (15)0.5163 (6)−0.0857 (4)0.0261 (6)
H14A0.01530.6622−0.04010.039*
H14B−0.03520.5007−0.13580.039*
H14C0.03330.5012−0.15480.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0322 (12)0.0350 (13)0.0103 (10)−0.0082 (9)0.0100 (9)−0.0035 (8)
C10.0219 (12)0.0242 (13)0.0107 (12)−0.0017 (9)0.0067 (10)−0.0010 (9)
C20.0202 (11)0.0246 (13)0.0082 (10)−0.0028 (9)0.0060 (9)−0.0016 (9)
C30.0242 (12)0.0183 (11)0.0107 (11)−0.0014 (9)0.0067 (9)−0.0010 (9)
Cl10.0313 (4)0.0213 (3)0.0185 (3)0.0008 (2)0.0070 (3)0.0049 (2)
C40.0207 (13)0.0207 (12)0.0125 (12)−0.0008 (9)0.0048 (10)0.0008 (9)
C50.0230 (12)0.0197 (11)0.0139 (13)−0.0038 (9)0.0074 (10)−0.0004 (9)
Cl20.0260 (3)0.0289 (3)0.0217 (4)−0.0064 (3)0.0084 (3)0.0042 (3)
C60.0262 (13)0.0243 (13)0.0137 (12)−0.0005 (10)0.0068 (11)0.0018 (10)
C70.0225 (13)0.0270 (14)0.0115 (13)0.0012 (10)0.0053 (10)0.0014 (10)
N10.0225 (11)0.0289 (12)0.0092 (10)−0.0043 (9)0.0069 (9)−0.0008 (9)
C80.0207 (12)0.0266 (13)0.0114 (12)−0.0019 (10)0.0067 (10)−0.0032 (9)
C90.0256 (13)0.0275 (14)0.0141 (13)0.0000 (11)0.0085 (11)0.0030 (11)
C100.0376 (17)0.0237 (14)0.0233 (16)−0.0026 (12)0.0134 (14)0.0027 (11)
C110.0348 (17)0.0288 (15)0.0274 (18)−0.0101 (13)0.0149 (14)−0.0045 (13)
C120.0236 (13)0.0322 (16)0.0231 (16)−0.0039 (11)0.0070 (12)−0.0050 (13)
C130.0224 (13)0.0261 (13)0.0139 (13)0.0008 (10)0.0073 (10)−0.0032 (10)
C140.0252 (14)0.0351 (16)0.0181 (15)−0.0001 (12)0.0060 (12)0.0004 (12)

Geometric parameters (Å, °)

O1—C11.241 (4)N1—H10.8800
C1—N11.346 (4)C8—C91.399 (4)
C1—C21.505 (4)C8—C131.402 (4)
C2—C31.396 (4)C9—C101.388 (5)
C2—C71.404 (4)C9—H90.9500
C3—C41.397 (4)C10—C111.386 (5)
C3—Cl11.736 (3)C10—H100.9500
C4—C51.398 (4)C11—C121.389 (5)
C4—H40.9500C11—H110.9500
C5—C61.388 (4)C12—C131.412 (5)
C5—Cl21.733 (3)C12—H120.9500
C6—C71.382 (5)C13—C141.510 (5)
C6—H60.9500C14—H14A0.9800
C7—H70.9500C14—H14B0.9800
N1—C81.431 (4)C14—H14C0.9800
O1—C1—N1124.6 (3)C9—C8—C13121.3 (3)
O1—C1—C2120.3 (3)C9—C8—N1118.9 (3)
N1—C1—C2115.1 (3)C13—C8—N1119.7 (3)
C3—C2—C7118.4 (3)C10—C9—C8120.2 (3)
C3—C2—C1120.8 (3)C10—C9—H9119.9
C7—C2—C1120.8 (3)C8—C9—H9119.9
C2—C3—C4121.3 (3)C11—C10—C9119.6 (3)
C2—C3—Cl1120.0 (2)C11—C10—H10120.2
C4—C3—Cl1118.7 (2)C9—C10—H10120.2
C3—C4—C5118.2 (3)C10—C11—C12120.3 (3)
C3—C4—H4120.9C10—C11—H11119.8
C5—C4—H4120.9C12—C11—H11119.8
C6—C5—C4121.8 (3)C11—C12—C13121.4 (3)
C6—C5—Cl2119.9 (2)C11—C12—H12119.3
C4—C5—Cl2118.3 (2)C13—C12—H12119.3
C7—C6—C5118.8 (3)C8—C13—C12117.1 (3)
C7—C6—H6120.6C8—C13—C14121.5 (3)
C5—C6—H6120.6C12—C13—C14121.4 (3)
C6—C7—C2121.5 (3)C13—C14—H14A109.5
C6—C7—H7119.3C13—C14—H14B109.5
C2—C7—H7119.3H14A—C14—H14B109.5
C1—N1—C8123.1 (3)C13—C14—H14C109.5
C1—N1—H1118.5H14A—C14—H14C109.5
C8—N1—H1118.5H14B—C14—H14C109.5
O1—C1—C2—C366.1 (4)C1—C2—C7—C6176.2 (3)
N1—C1—C2—C3−114.1 (3)O1—C1—N1—C8−7.1 (5)
O1—C1—C2—C7−111.4 (4)C2—C1—N1—C8173.2 (3)
N1—C1—C2—C768.4 (4)C1—N1—C8—C9−50.9 (4)
C7—C2—C3—C40.3 (4)C1—N1—C8—C13130.9 (3)
C1—C2—C3—C4−177.3 (3)C13—C8—C9—C10−1.0 (5)
C7—C2—C3—Cl1−179.2 (2)N1—C8—C9—C10−179.1 (3)
C1—C2—C3—Cl13.2 (4)C8—C9—C10—C110.4 (5)
C2—C3—C4—C51.2 (4)C9—C10—C11—C120.8 (6)
Cl1—C3—C4—C5−179.3 (2)C10—C11—C12—C13−1.6 (6)
C3—C4—C5—C6−1.7 (5)C9—C8—C13—C120.3 (5)
C3—C4—C5—Cl2178.4 (2)N1—C8—C13—C12178.4 (3)
C4—C5—C6—C70.6 (5)C9—C8—C13—C14−180.0 (3)
Cl2—C5—C6—C7−179.4 (2)N1—C8—C13—C14−1.8 (4)
C5—C6—C7—C21.0 (5)C11—C12—C13—C81.0 (5)
C3—C2—C7—C6−1.4 (5)C11—C12—C13—C14−178.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.042.865 (4)156
C6—H6···O1ii0.952.553.415 (4)151
C11—H11···Cl2iii0.952.833.680 (3)150
C14—H14C···Cg2i0.982.873.528 (4)125

Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, −y+2, z−1/2; (iii) x−1/2, y−3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2478).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1365. [PMC free article] [PubMed]
  • Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Saeed, A., Khera, R. A., Abbas, N., Gotoh, K. & Ishida, H. (2008b). Acta Cryst. E64, o2043. [PMC free article] [PubMed]
  • Saeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008a). Acta Cryst. E64, o1934. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.
  • Zhou, B. & Zheng, P.-W. (2007). Acta Cryst. E63, o4630.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography