PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m803.
Published online 2009 June 20. doi:  10.1107/S1600536809023149
PMCID: PMC2969427

{2,2′-[1,1′-(Ethyl­enedioxy­dinitrilo)diethyl­idyne]di-1-naphtholato}nickel(II)

Abstract

In the title complex, [Ni(C26H22N2O4)], the NiII atom has a slight distortion toward tetra­hedral geometry from a square-planar structure, coordinated by two O and two N atoms of the tetra­dentate salen-type bis­oxime 2,2′-[1,1′-(ethyl­enedioxy­dinitrilo)diethyl­idyne]di-1-naphtholate (L 2−) unit, with a mean deviation of 0.022 Å from the N2O2 plane. The N- and O-donor atoms are mutually cis. The dihedral angle between two naphthalene systems of the L 2− ligand is 67.59 (4)°. The crystal structure is stabilized by inter­molecular C—H(...)O and C—H(...)π inter­actions, which link neighbouring mol­ecules into extended chains along the b axis.

Related literature

For multidentate salen-type compounds in coordination chemistry, see: Akine et al. (2005 [triangle]); Dong et al. (2009a [triangle],b [triangle]); Katsuki (1995 [triangle]); Ray et al. (2003 [triangle]); Sun et al. (2008 [triangle]). For the isostructural Cu complex, see: Dong et al. (2009c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m803-scheme1.jpg

Experimental

Crystal data

  • [Ni(C26H22N2O4)]
  • M r = 485.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m803-efi1.jpg
  • a = 13.6975 (13) Å
  • b = 8.2711 (10) Å
  • c = 19.049 (2) Å
  • β = 95.346 (1)°
  • V = 2148.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.94 mm−1
  • T = 298 K
  • 0.43 × 0.16 × 0.06 mm

Data collection

  • Siemens SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.688, T max = 0.946
  • 10414 measured reflections
  • 3782 independent reflections
  • 2179 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.126
  • S = 1.02
  • 3782 reflections
  • 298 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023149/hg2525sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023149/hg2525Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge finanical support from the ‘Jing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University.

supplementary crystallographic information

Comment

Multidentate salen-type compounds play an important role in the development of modern coordination chemistry as they readily form stable complexes with most of the transition metals, in which some could exhibit interesting properties (Katsuki, et al., 1995; Akine, et al., 2005; Ray, et al., 2003). Here, we report a new NiII complex based on the tetradentate salen-type bisoxime ligand 2,2'-[1,1'-ethylenedioxybis(nitriloethylidyne)]dinaphthol (Dong, et al., 2009a; Dong, et al., 2009b).

In this paper, a new mononuclear nickel(II) complex with salen-type bisoxime chelating ligand, 2,2'-[1,1'-ethylenedioxybis(nitriloethylidyne)]dinaphthol, has been synthesized (Sun, et al., 2008). The dihedral angle between the coordination plane of O3—Ni1—N1 and that of O4—Ni1—N2 is 67.59 (4)°, indicating slight distortion toward tetrahedral geometry from the square planar structure, with a mean deviation of 0.022 Å from the N2O2 plane. The crystal structure is further stabilized by intermolecular C15—H15A···O3 hydrogen bond and C3—H3C···π(benzene), C15—H15A···π(naphthalene) interactions (Table 1), which link neighbouring molecules into extended chains along the b axis.

Experimental

A solution of nickel(II) chloride tetrahydrate (2.8 mg, 0.0138 mmol) in methanol (3 ml) was added dropwise to a solution of 2,2'-[1,1'-ethylenedioxybis(nitriloethylidyne)]dinaphthol (4.5 mg, 0.0105 mmol) and 99% triethylamine (0.025 ml) in dichloromethane (3 ml). The color of the mixing solution turns to dark-yellow, immediately, and was allowed to stand at room temperature for about three weeks, the solvent was partially evaporated and obtained brown needle-like single crystals suitable for X-ray crystallographic analysis.

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), C—H = 0.97 (CH2), or 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Figures

Fig. 1.
The molecule structure of the title complex. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
Fig. 2.
Part of the supramolecular structure of the title complex Showing the formation of C15—H15A···O3 hydrogen bond and C3—H3C···π(benzene), C15—H15A···π(naphthalene) ...

Crystal data

[Ni(C26H22N2O4)]F(000) = 1008
Mr = 485.17Dx = 1.500 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1885 reflections
a = 13.6975 (13) Åθ = 2.9–22.6°
b = 8.2711 (10) ŵ = 0.94 mm1
c = 19.049 (2) ÅT = 298 K
β = 95.346 (1)°Prismatic, brown
V = 2148.7 (4) Å30.43 × 0.16 × 0.06 mm
Z = 4

Data collection

Siemens SMART 1000 CCD area-detector diffractometer3782 independent reflections
Radiation source: fine-focus sealed tube2179 reflections with I > 2σ(I)
graphiteRint = 0.073
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→15
Tmin = 0.688, Tmax = 0.946k = −9→9
10414 measured reflectionsl = −22→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0457P)2 + 0.4257P] where P = (Fo2 + 2Fc2)/3
3782 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.75831 (4)0.20469 (8)0.22591 (3)0.0404 (2)
N10.7696 (2)0.2159 (5)0.12766 (18)0.0427 (9)
N20.6275 (2)0.2675 (4)0.22573 (18)0.0414 (9)
O10.7023 (2)0.1391 (4)0.07716 (16)0.0612 (10)
O20.5751 (2)0.2984 (4)0.15860 (15)0.0476 (8)
O30.89260 (19)0.1753 (4)0.23858 (14)0.0468 (8)
O40.7640 (2)0.1617 (4)0.31931 (15)0.0513 (9)
C10.6314 (4)0.0466 (6)0.1102 (3)0.0589 (14)
H1A0.66140.00220.15420.071*
H1B0.6093−0.04280.07980.071*
C20.5455 (3)0.1494 (6)0.1245 (3)0.0548 (14)
H2A0.50700.17280.08040.066*
H2B0.50420.08980.15420.066*
C30.8419 (3)0.2790 (6)0.0185 (2)0.0577 (14)
H3A0.81830.1769−0.00020.087*
H3B0.90750.29650.00610.087*
H3C0.80010.3640−0.00100.087*
C40.8418 (3)0.2780 (6)0.0975 (2)0.0422 (12)
C50.9487 (3)0.2779 (5)0.2089 (2)0.0390 (11)
C60.9264 (3)0.3411 (5)0.1412 (2)0.0408 (12)
C70.9930 (4)0.4501 (6)0.1145 (2)0.0511 (13)
H70.97820.49200.06950.061*
C81.0781 (4)0.4966 (6)0.1518 (3)0.0561 (14)
H81.11920.57040.13250.067*
C91.1038 (3)0.4326 (6)0.2199 (3)0.0484 (12)
C101.0395 (3)0.3241 (5)0.2491 (2)0.0407 (11)
C111.0631 (3)0.2647 (6)0.3181 (2)0.0497 (13)
H111.02030.19400.33760.060*
C121.1481 (4)0.3094 (7)0.3565 (3)0.0621 (15)
H121.16300.26980.40190.075*
C131.2124 (4)0.4155 (7)0.3268 (3)0.0709 (17)
H131.27070.44490.35260.085*
C141.1914 (4)0.4762 (6)0.2610 (3)0.0653 (15)
H141.23500.54740.24260.078*
C150.4730 (3)0.3664 (6)0.2637 (2)0.0547 (14)
H15A0.47150.48190.25890.082*
H15B0.43640.33510.30210.082*
H15C0.44430.31770.22090.082*
C160.5777 (3)0.3104 (5)0.2781 (2)0.0396 (11)
C170.7106 (3)0.2156 (6)0.3666 (2)0.0415 (11)
C180.6206 (3)0.2971 (5)0.3500 (2)0.0401 (11)
C190.5721 (3)0.3588 (6)0.4074 (3)0.0544 (13)
H190.51400.41600.39750.065*
C200.6067 (4)0.3380 (6)0.4755 (3)0.0588 (14)
H200.57270.38230.51090.071*
C210.6941 (3)0.2496 (6)0.4937 (2)0.0473 (13)
C220.7463 (3)0.1878 (6)0.4392 (2)0.0408 (11)
C230.8325 (3)0.0997 (6)0.4558 (2)0.0508 (13)
H230.86700.05900.41990.061*
C240.8665 (4)0.0730 (7)0.5248 (3)0.0624 (15)
H240.92390.01450.53540.075*
C250.8152 (4)0.1332 (7)0.5791 (3)0.0692 (17)
H250.83820.11380.62580.083*
C260.7319 (4)0.2199 (7)0.5639 (3)0.0620 (15)
H260.69900.26070.60060.074*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0349 (3)0.0501 (4)0.0356 (4)0.0030 (3)0.0009 (2)0.0056 (3)
N10.033 (2)0.056 (3)0.038 (2)0.010 (2)−0.0003 (17)−0.002 (2)
N20.041 (2)0.046 (3)0.035 (2)0.0016 (18)−0.0066 (17)0.0077 (18)
O10.048 (2)0.091 (3)0.043 (2)−0.004 (2)−0.0062 (17)−0.0145 (18)
O20.0465 (18)0.047 (2)0.0471 (19)0.0065 (17)−0.0069 (15)0.0045 (17)
O30.0344 (17)0.063 (2)0.0422 (19)0.0012 (16)0.0013 (14)0.0161 (16)
O40.0446 (18)0.072 (3)0.0380 (19)0.0152 (17)0.0097 (15)0.0141 (16)
C10.056 (3)0.048 (3)0.069 (4)0.001 (3)−0.012 (3)−0.011 (3)
C20.045 (3)0.057 (4)0.060 (3)−0.003 (3)−0.010 (2)−0.003 (3)
C30.058 (3)0.083 (4)0.033 (3)0.022 (3)0.005 (2)0.009 (3)
C40.044 (3)0.052 (3)0.031 (2)0.019 (2)0.004 (2)0.004 (2)
C50.035 (3)0.042 (3)0.041 (3)0.009 (2)0.008 (2)0.003 (2)
C60.041 (3)0.043 (3)0.039 (3)0.010 (2)0.007 (2)0.010 (2)
C70.058 (3)0.054 (4)0.044 (3)0.011 (3)0.015 (3)0.009 (2)
C80.063 (4)0.043 (3)0.065 (4)0.001 (3)0.023 (3)0.005 (3)
C90.042 (3)0.046 (3)0.058 (3)0.003 (2)0.009 (3)−0.004 (3)
C100.037 (3)0.043 (3)0.042 (3)0.008 (2)0.004 (2)0.000 (2)
C110.048 (3)0.053 (3)0.047 (3)0.004 (2)0.000 (2)0.002 (2)
C120.056 (3)0.073 (4)0.053 (3)0.002 (3)−0.016 (3)−0.005 (3)
C130.053 (4)0.065 (4)0.090 (5)0.001 (3)−0.013 (3)−0.018 (4)
C140.054 (3)0.055 (4)0.088 (4)−0.009 (3)0.012 (3)−0.003 (3)
C150.040 (3)0.057 (4)0.067 (3)0.011 (3)0.005 (2)0.006 (3)
C160.033 (2)0.037 (3)0.049 (3)−0.002 (2)0.006 (2)0.008 (2)
C170.038 (3)0.045 (3)0.042 (3)−0.009 (2)0.006 (2)0.006 (2)
C180.043 (3)0.032 (3)0.046 (3)−0.005 (2)0.007 (2)0.005 (2)
C190.050 (3)0.050 (3)0.065 (4)0.000 (3)0.012 (3)−0.007 (3)
C200.066 (4)0.056 (4)0.056 (4)−0.012 (3)0.019 (3)−0.018 (3)
C210.048 (3)0.050 (4)0.044 (3)−0.018 (2)0.005 (2)−0.001 (2)
C220.041 (3)0.046 (3)0.034 (3)−0.014 (2)0.001 (2)0.010 (2)
C230.045 (3)0.063 (4)0.044 (3)−0.011 (3)−0.002 (2)0.011 (3)
C240.052 (3)0.080 (4)0.054 (3)−0.017 (3)−0.003 (3)0.010 (3)
C250.071 (4)0.094 (5)0.040 (3)−0.031 (4)−0.011 (3)0.007 (3)
C260.080 (4)0.064 (4)0.043 (3)−0.030 (3)0.007 (3)−0.010 (3)

Geometric parameters (Å, °)

Ni1—O41.809 (3)C10—C111.413 (6)
Ni1—O31.849 (3)C11—C121.367 (6)
Ni1—N21.865 (3)C11—H110.9300
Ni1—N11.894 (3)C12—C131.400 (7)
N1—C41.295 (5)C12—H120.9300
N1—O11.419 (4)C13—C141.355 (7)
N2—C161.309 (5)C13—H130.9300
N2—O21.430 (4)C14—H140.9300
O1—C11.427 (5)C15—C161.508 (5)
O2—C21.434 (5)C15—H15A0.9600
O3—C51.308 (5)C15—H15B0.9600
O4—C171.292 (5)C15—H15C0.9600
C1—C21.498 (6)C16—C181.444 (6)
C1—H1A0.9700C17—C181.415 (6)
C1—H1B0.9700C17—C221.442 (6)
C2—H2A0.9700C18—C191.426 (6)
C2—H2B0.9700C19—C201.349 (6)
C3—C41.506 (5)C19—H190.9300
C3—H3A0.9600C20—C211.419 (7)
C3—H3B0.9600C20—H200.9300
C3—H3C0.9600C21—C261.409 (6)
C4—C61.459 (6)C21—C221.410 (6)
C5—C61.398 (5)C22—C231.398 (6)
C5—C101.449 (6)C23—C241.370 (6)
C6—C71.411 (6)C23—H230.9300
C7—C81.362 (6)C24—C251.395 (7)
C7—H70.9300C24—H240.9300
C8—C91.415 (6)C25—C261.356 (7)
C8—H80.9300C25—H250.9300
C9—C101.407 (6)C26—H260.9300
C9—C141.417 (6)
O4—Ni1—O383.93 (12)C9—C10—C5119.8 (4)
O4—Ni1—N290.58 (14)C11—C10—C5120.7 (4)
O3—Ni1—N2168.72 (15)C12—C11—C10121.0 (5)
O4—Ni1—N1168.87 (14)C12—C11—H11119.5
O3—Ni1—N187.90 (13)C10—C11—H11119.5
N2—Ni1—N198.73 (14)C11—C12—C13119.3 (5)
C4—N1—O1110.6 (3)C11—C12—H12120.3
C4—N1—Ni1126.4 (3)C13—C12—H12120.3
O1—N1—Ni1122.7 (3)C14—C13—C12121.2 (5)
C16—N2—O2112.3 (3)C14—C13—H13119.4
C16—N2—Ni1130.0 (3)C12—C13—H13119.4
O2—N2—Ni1117.0 (2)C13—C14—C9120.8 (5)
N1—O1—C1111.5 (3)C13—C14—H14119.6
N2—O2—C2110.4 (3)C9—C14—H14119.6
C5—O3—Ni1118.4 (3)C16—C15—H15A109.5
C17—O4—Ni1130.0 (3)C16—C15—H15B109.5
O1—C1—C2110.7 (4)H15A—C15—H15B109.5
O1—C1—H1A109.5C16—C15—H15C109.5
C2—C1—H1A109.5H15A—C15—H15C109.5
O1—C1—H1B109.5H15B—C15—H15C109.5
C2—C1—H1B109.5N2—C16—C18120.5 (4)
H1A—C1—H1B108.1N2—C16—C15119.9 (4)
O2—C2—C1112.1 (4)C18—C16—C15119.5 (4)
O2—C2—H2A109.2O4—C17—C18123.1 (4)
C1—C2—H2A109.2O4—C17—C22116.8 (4)
O2—C2—H2B109.2C18—C17—C22120.1 (4)
C1—C2—H2B109.2C17—C18—C19117.2 (4)
H2A—C2—H2B107.9C17—C18—C16121.2 (4)
C4—C3—H3A109.5C19—C18—C16121.5 (4)
C4—C3—H3B109.5C20—C19—C18123.0 (5)
H3A—C3—H3B109.5C20—C19—H19118.5
C4—C3—H3C109.5C18—C19—H19118.5
H3A—C3—H3C109.5C19—C20—C21120.9 (5)
H3B—C3—H3C109.5C19—C20—H20119.5
N1—C4—C6119.1 (4)C21—C20—H20119.5
N1—C4—C3121.2 (4)C26—C21—C22118.0 (5)
C6—C4—C3119.6 (4)C26—C21—C20123.3 (5)
O3—C5—C6123.6 (4)C22—C21—C20118.7 (4)
O3—C5—C10116.9 (4)C23—C22—C21119.8 (4)
C6—C5—C10119.5 (4)C23—C22—C17120.3 (4)
C5—C6—C7118.5 (4)C21—C22—C17119.9 (4)
C5—C6—C4119.1 (4)C24—C23—C22120.3 (5)
C7—C6—C4121.9 (4)C24—C23—H23119.8
C8—C7—C6122.9 (4)C22—C23—H23119.8
C8—C7—H7118.5C23—C24—C25120.3 (5)
C6—C7—H7118.5C23—C24—H24119.9
C7—C8—C9120.0 (5)C25—C24—H24119.9
C7—C8—H8120.0C26—C25—C24120.2 (5)
C9—C8—H8120.0C26—C25—H25119.9
C10—C9—C8119.2 (4)C24—C25—H25119.9
C10—C9—C14118.3 (5)C25—C26—C21121.4 (5)
C8—C9—C14122.5 (5)C25—C26—H26119.3
C9—C10—C11119.4 (4)C21—C26—H26119.3
O4—Ni1—N1—C4−77.6 (9)C14—C9—C10—C5179.4 (4)
O3—Ni1—N1—C4−34.9 (4)O3—C5—C10—C9179.2 (4)
N2—Ni1—N1—C4135.9 (4)C6—C5—C10—C90.4 (6)
O4—Ni1—N1—O195.3 (8)O3—C5—C10—C11−2.4 (6)
O3—Ni1—N1—O1138.1 (3)C6—C5—C10—C11178.8 (4)
N2—Ni1—N1—O1−51.1 (3)C9—C10—C11—C12−0.8 (7)
O4—Ni1—N2—C1618.8 (4)C5—C10—C11—C12−179.2 (4)
O3—Ni1—N2—C16−41.9 (9)C10—C11—C12—C13−0.1 (7)
N1—Ni1—N2—C16−167.3 (4)C11—C12—C13—C140.9 (8)
O4—Ni1—N2—O2−171.9 (3)C12—C13—C14—C9−0.7 (8)
O3—Ni1—N2—O2127.5 (6)C10—C9—C14—C13−0.2 (7)
N1—Ni1—N2—O22.0 (3)C8—C9—C14—C13178.3 (5)
C4—N1—O1—C1170.0 (4)O2—N2—C16—C18−176.5 (4)
Ni1—N1—O1—C1−3.9 (5)Ni1—N2—C16—C18−6.7 (6)
C16—N2—O2—C2−110.3 (4)O2—N2—C16—C156.5 (6)
Ni1—N2—O2—C278.6 (3)Ni1—N2—C16—C15176.3 (3)
O4—Ni1—O3—C5−136.0 (3)Ni1—O4—C17—C1814.1 (6)
N2—Ni1—O3—C5−74.8 (8)Ni1—O4—C17—C22−166.5 (3)
N1—Ni1—O3—C551.5 (3)O4—C17—C18—C19−176.3 (4)
O3—Ni1—O4—C17147.7 (4)C22—C17—C18—C194.3 (6)
N2—Ni1—O4—C17−22.5 (4)O4—C17—C18—C166.6 (7)
N1—Ni1—O4—C17−169.4 (7)C22—C17—C18—C16−172.8 (4)
N1—O1—C1—C287.7 (4)N2—C16—C18—C17−9.8 (7)
N2—O2—C2—C1−62.0 (5)C15—C16—C18—C17167.3 (4)
O1—C1—C2—O2−48.8 (5)N2—C16—C18—C19173.2 (4)
O1—N1—C4—C6−170.9 (4)C15—C16—C18—C19−9.8 (7)
Ni1—N1—C4—C62.8 (6)C17—C18—C19—C20−2.1 (7)
O1—N1—C4—C36.2 (6)C16—C18—C19—C20175.0 (4)
Ni1—N1—C4—C3179.9 (3)C18—C19—C20—C21−1.0 (7)
Ni1—O3—C5—C6−39.8 (5)C19—C20—C21—C26−178.0 (4)
Ni1—O3—C5—C10141.4 (3)C19—C20—C21—C222.0 (7)
O3—C5—C6—C7−179.5 (4)C26—C21—C22—C230.2 (6)
C10—C5—C6—C7−0.7 (6)C20—C21—C22—C23−179.8 (4)
O3—C5—C6—C4−6.9 (6)C26—C21—C22—C17−179.8 (4)
C10—C5—C6—C4171.9 (4)C20—C21—C22—C170.2 (6)
N1—C4—C6—C526.4 (6)O4—C17—C22—C23−2.9 (6)
C3—C4—C6—C5−150.8 (4)C18—C17—C22—C23176.6 (4)
N1—C4—C6—C7−161.3 (4)O4—C17—C22—C21177.1 (4)
C3—C4—C6—C721.6 (6)C18—C17—C22—C21−3.4 (6)
C5—C6—C7—C8−0.1 (7)C21—C22—C23—C240.1 (7)
C4—C6—C7—C8−172.5 (4)C17—C22—C23—C24−179.9 (4)
C6—C7—C8—C91.3 (7)C22—C23—C24—C250.2 (7)
C7—C8—C9—C10−1.6 (7)C23—C24—C25—C26−0.7 (8)
C7—C8—C9—C14179.9 (5)C24—C25—C26—C211.0 (8)
C8—C9—C10—C11−177.6 (4)C22—C21—C26—C25−0.7 (7)
C14—C9—C10—C111.0 (6)C20—C21—C26—C25179.2 (5)
C8—C9—C10—C50.8 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15A···O3i0.962.453.152 (6)130
C3—H3C···Cg1ii0.973.174.127 (3)172
C15—H15A···Cg2iii0.963.534.398 (3)152

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+1, −y, −z; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2525).

References

  • Akine, S., Takanori, T., Taniguchi, T. & Nabeshima, T. (2005). Inorg. Chem.44, 3270–3274. [PubMed]
  • Dong, W. K., Duan, J. G., Guan, Y. H., Shi, J. Y. & Zhao, C. Y. (2009a). Inorg. Chim. Acta, 362, 1129–1134.
  • Dong, W. K., Sun, Y. X., Zhang, Y. P., Li, L., He, X. N. & Tang, X. L. (2009b). Inorg. Chim. Acta, 362, 117–124.
  • Dong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009c). Acta Cryst E65, m802. [PMC free article] [PubMed]
  • Katsuki, T. (1995). Coord. Chem. Rev.140, 189–214.
  • Ray, M. S., Mukhopadhyay, G. M., Drew, M. G. B., Lu, T. H., Chaudhuri, S. & Ghosh, A. (2003). Inorg. Chem. Commun.6, 961–965.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sun, Y.-X., Gao, S.-X., Shi, J.-Y. & Dong, W.-K. (2008). Acta Cryst. E64, m226. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography