PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m806.
Published online 2009 June 20. doi:  10.1107/S1600536809022831
PMCID: PMC2969423

Diaqua­bis(norfloxacinato)manganese(II) 2,2′-bipyridine solvate tetra­hydrate

Abstract

In the crystal structure of the title compound {systematic name: diaqua­bis[1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ato]manganese(II) 2,2′-bipyridine solvate tetra­hydrate}, [Mn(C16H17FN3O3)2(H2O)2]·C10H8N2·4H2O, the pyridone O atom and one carboxyl­ate O atom of the two norfloxacin ligands are bound to the MnII ion, which is located on an inversion centre, and occupy equatorial positions, while two aqua O atoms lie in apical positions, resulting in a distorted octa­hedral geometry. The crystal packing is stabilized by N—H(...)O and O—H(...)O hydrogen-bonding interactions.

Related literature

For background, see: Dukhande et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m806-scheme1.jpg

Experimental

Crystal data

  • [Mn(C16H17FN3O3)2(H2O)2]·C10H8N2·4H2O
  • M r = 955.87
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m806-efi1.jpg
  • a = 9.5179 (4) Å
  • b = 11.4645 (2) Å
  • c = 11.6617 (2) Å
  • α = 118.8440 (10)°
  • β = 93.398 (2)°
  • γ = 97.258 (2)°
  • V = 1095.06 (5) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 296 K
  • 0.38 × 0.18 × 0.05 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.921, T max = 0.981
  • 13676 measured reflections
  • 3856 independent reflections
  • 3208 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.199
  • S = 1.07
  • 3856 reflections
  • 310 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.14 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022831/at2812sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022831/at2812Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Zhejiang Province, China for financial support (grant No. Y407301).

supplementary crystallographic information

Comment

1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid (norfloxacin), is the third generation quinolone antibacterial drug with broad-spectrum antibacterial activity, especially for gram-negative bacteria. It can interfere with the synthesis of DNA, destroy the fission of cells in order to sterilize by inhibiting DNA gyrase. Manganese is an important trace element needed for normal physiological functions and development. It is also a cofactor or required metal ion for many enzymes, such as superoxide dismutase, glutamine synthetase and arginase (Dukhande et al., 2006). Synthesis, characterization and biological activity studies of the manganese complexes have become one of the most attractive research fields in modern bioinorganic chemistry.

In the title compound, the Mn(II) ion in a inversion centre is coordinated with four oxygen atoms of the norfloxacin ligands in the equatorial positions while two oxygen atoms of the water occupy the axial positions resulting in a distorted octahedral geometry around the central metal atom. The Mn—O bond distances arising from the two carbonyl oxygen atoms O1 are longer, [2.157 (2) Å], than those arising from the carboxylate oxygen atoms O2 [2.132 (2) Å]. The axial average linkages between manganese and oxygen atoms of water are substantially longer [2.212 (3) Å] than the equatorial bond distances. The bond angles O1—Mn1—O1A, O2—Mn1—O2A and O1W—Mn1—O1WA are 180° while the bond angles O2—Mn1—O1 and O2A—Mn1—O1 open up slightly from 82.73 (9)° to 97.27 (9)°, resulting in a slight distortion from the idealized octahedral geometry.

The crystal packing is stabilized by N—H···O and O—H···O hydrogen bonding interactions (Table 1).

Experimental

A mixture of 0.1 mmol norfloxacin, 0.1 mmol MnCl24H2O, 0.1 mmol 2,2'-bipyridine and 10 mL distilled water was sealed in a 25 mL Teflon-lined stainless vessel and heated at 433 K for 3 d, then cooled slowly to room temperature. The solution was filtered and block yellow crystals were obtained.

Refinement

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97 Å and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C),]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
A view of the title molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability [symmetry code: (A) -x, -y, -z].

Crystal data

[Mn(C16H17FN3O3)2(H2O)2]·C10H8N2·4H2OZ = 1
Mr = 955.87F(000) = 501
Triclinic, P1Dx = 1.449 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5179 (4) ÅCell parameters from 3687 reflections
b = 11.4645 (2) Åθ = 2.0–25.0°
c = 11.6617 (2) ŵ = 0.38 mm1
α = 118.844 (1)°T = 296 K
β = 93.398 (2)°Block, yellow
γ = 97.258 (2)°0.38 × 0.18 × 0.05 mm
V = 1095.06 (5) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer3856 independent reflections
Radiation source: fine-focus sealed tube3208 reflections with I > 2σ(I)
graphiteRint = 0.033
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.921, Tmax = 0.981k = −13→13
13676 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.1291P)2 + 0.9928P] where P = (Fo2 + 2Fc2)/3
3856 reflections(Δ/σ)max < 0.001
310 parametersΔρmax = 1.14 e Å3
9 restraintsΔρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.00000.00000.00000.0298 (3)
F1−0.3877 (2)−0.5950 (2)−0.0804 (2)0.0422 (5)
N10.1045 (3)−0.2919 (3)0.2598 (3)0.0304 (6)
N2−0.3216 (3)−0.6391 (3)0.1294 (3)0.0317 (7)
N3−0.5036 (3)−0.8056 (3)0.2005 (3)0.0387 (7)
H3A−0.5571−0.82270.24940.046*
N4−0.1120 (3)−0.0184 (3)0.3595 (3)0.0409 (7)
O1W−0.0371 (3)0.1057 (3)0.2090 (3)0.0439 (7)
H1WA−0.047 (5)0.071 (4)0.260 (4)0.066*
H1WB0.012 (5)0.182 (3)0.263 (4)0.066*
O1−0.0540 (3)−0.1938 (2)−0.0106 (2)0.0356 (6)
O20.2086 (2)−0.0111 (2)0.0669 (3)0.0363 (6)
O2W0.0743 (2)0.3979 (2)0.4232 (2)0.0312 (5)
H2WB0.01550.45150.45610.037*
H2WA0.074 (4)0.366 (4)0.352 (2)0.047*
O30.3729 (3)−0.0402 (3)0.1876 (3)0.0445 (7)
O3W−0.6092 (3)−0.6120 (4)0.4471 (3)0.0510 (8)
H3WA−0.553 (5)−0.548 (3)0.462 (5)0.076*
H3WB−0.610 (6)−0.678 (3)0.385 (4)0.076*
C10.1824 (3)−0.2018 (3)0.2366 (3)0.0294 (7)
H1A0.2717−0.15970.28700.035*
C20.1411 (3)−0.1664 (3)0.1442 (3)0.0277 (7)
C30.2478 (3)−0.0647 (3)0.1329 (3)0.0304 (7)
C40.0043 (3)−0.2260 (3)0.0674 (3)0.0264 (7)
C5−0.0729 (3)−0.3357 (3)0.0820 (3)0.0265 (7)
C6−0.1985 (3)−0.4144 (3)−0.0032 (3)0.0291 (7)
H6A−0.2307−0.3989−0.07070.035*
C7−0.2736 (3)−0.5133 (3)0.0123 (3)0.0296 (7)
C8−0.2372 (3)−0.5373 (3)0.1170 (3)0.0283 (7)
C9−0.1118 (3)−0.4615 (3)0.1998 (3)0.0297 (7)
H9A−0.0830−0.47490.26960.036*
C10−0.0263 (3)−0.3640 (3)0.1805 (3)0.0268 (7)
C110.1577 (4)−0.3222 (5)0.3635 (4)0.0483 (10)
H11A0.1015−0.28500.43570.058*
H11B0.1408−0.41960.32660.058*
C120.3105 (5)−0.2698 (6)0.4181 (5)0.0667 (14)
H12A0.3339−0.29310.48480.100*
H12B0.3289−0.17320.45630.100*
H12C0.3679−0.30910.34860.100*
C13−0.2658 (4)−0.6694 (3)0.2297 (4)0.0333 (8)
H13A−0.2753−0.59770.31680.040*
H13B−0.1650−0.67410.22560.040*
C14−0.3468 (4)−0.8034 (4)0.2073 (4)0.0348 (8)
H14A−0.3265−0.87640.12550.042*
H14B−0.3142−0.81820.27890.042*
C15−0.5550 (4)−0.7743 (4)0.0974 (5)0.0480 (10)
H15A−0.6568−0.77330.09550.058*
H15B−0.5386−0.84320.01130.058*
C16−0.4754 (4)−0.6377 (4)0.1281 (5)0.0428 (10)
H16A−0.5095−0.61580.06200.051*
H16B−0.4933−0.56880.21360.051*
C17−0.0729 (4)−0.0353 (4)0.4622 (3)0.0361 (8)
C18−0.1623 (5)−0.1148 (5)0.4961 (5)0.0542 (11)
H18A−0.1329−0.12650.56680.065*
C19−0.2967 (5)−0.1769 (6)0.4233 (5)0.0672 (14)
H19A−0.3587−0.23050.44490.081*
C20−0.3377 (5)−0.1586 (5)0.3188 (5)0.0598 (12)
H20A−0.4278−0.19780.26920.072*
C21−0.2410 (4)−0.0807 (4)0.2904 (4)0.0492 (10)
H21A−0.2671−0.07050.21810.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0279 (4)0.0306 (4)0.0384 (5)−0.0017 (3)0.0012 (3)0.0249 (3)
F10.0336 (11)0.0393 (11)0.0501 (13)−0.0151 (9)−0.0137 (9)0.0265 (10)
N10.0239 (14)0.0362 (15)0.0370 (16)−0.0042 (11)−0.0018 (12)0.0255 (13)
N20.0214 (14)0.0323 (15)0.0502 (18)−0.0029 (11)0.0024 (12)0.0291 (14)
N30.0256 (14)0.0447 (18)0.060 (2)−0.0028 (13)0.0082 (14)0.0385 (16)
N40.0401 (18)0.0442 (18)0.0402 (17)0.0010 (14)0.0012 (14)0.0241 (15)
O1W0.0558 (17)0.0430 (15)0.0369 (14)0.0043 (13)0.0047 (13)0.0242 (12)
O10.0354 (13)0.0339 (13)0.0440 (14)−0.0065 (10)−0.0067 (11)0.0286 (12)
O20.0286 (12)0.0425 (14)0.0511 (15)−0.0023 (10)0.0017 (11)0.0360 (13)
O2W0.0290 (12)0.0291 (12)0.0373 (13)−0.0011 (9)−0.0061 (10)0.0205 (11)
O30.0266 (13)0.0507 (16)0.0700 (19)−0.0133 (11)−0.0098 (12)0.0470 (15)
O3W0.0297 (14)0.072 (2)0.0455 (17)0.0075 (14)0.0191 (13)0.0240 (15)
C10.0230 (15)0.0297 (17)0.0387 (18)−0.0024 (13)0.0007 (13)0.0214 (15)
C20.0228 (15)0.0278 (16)0.0358 (18)0.0001 (13)0.0041 (13)0.0193 (14)
C30.0263 (17)0.0306 (17)0.0378 (19)−0.0021 (13)0.0033 (14)0.0215 (15)
C40.0276 (16)0.0245 (16)0.0314 (17)0.0023 (13)0.0056 (13)0.0176 (14)
C50.0237 (15)0.0254 (16)0.0338 (17)0.0010 (12)0.0032 (13)0.0180 (14)
C60.0281 (17)0.0302 (17)0.0329 (17)0.0017 (13)0.0010 (14)0.0199 (14)
C70.0240 (16)0.0270 (16)0.0363 (18)−0.0027 (13)−0.0012 (13)0.0168 (14)
C80.0263 (16)0.0249 (16)0.0392 (19)0.0013 (13)0.0054 (14)0.0207 (15)
C90.0273 (16)0.0314 (17)0.0364 (18)−0.0009 (13)0.0008 (14)0.0232 (15)
C100.0238 (16)0.0266 (16)0.0329 (17)0.0011 (13)0.0027 (13)0.0179 (14)
C110.036 (2)0.069 (3)0.058 (3)−0.0065 (18)−0.0070 (18)0.051 (2)
C120.056 (3)0.090 (4)0.069 (3)−0.001 (3)−0.007 (2)0.055 (3)
C130.0281 (17)0.0341 (18)0.044 (2)−0.0046 (14)−0.0002 (15)0.0273 (16)
C140.0279 (17)0.0366 (19)0.049 (2)0.0003 (14)0.0070 (15)0.0292 (17)
C150.0270 (18)0.055 (2)0.075 (3)−0.0097 (17)−0.0036 (18)0.047 (2)
C160.0243 (17)0.047 (2)0.075 (3)0.0002 (15)0.0061 (17)0.046 (2)
C170.0365 (19)0.0367 (19)0.0349 (19)0.0026 (15)0.0036 (16)0.0186 (16)
C180.045 (2)0.071 (3)0.057 (3)−0.008 (2)−0.001 (2)0.045 (2)
C190.048 (3)0.084 (4)0.076 (3)−0.020 (2)−0.004 (2)0.053 (3)
C200.043 (2)0.070 (3)0.064 (3)−0.006 (2)−0.006 (2)0.035 (3)
C210.046 (2)0.058 (3)0.042 (2)0.0024 (19)−0.0021 (18)0.027 (2)

Geometric parameters (Å, °)

Mn1—O22.132 (2)C5—C101.400 (5)
Mn1—O2i2.132 (2)C6—C71.356 (5)
Mn1—O1i2.157 (2)C6—H6A0.9300
Mn1—O12.157 (2)C7—C81.408 (5)
Mn1—O1Wi2.212 (3)C8—C91.380 (5)
Mn1—O1W2.212 (3)C9—C101.414 (4)
F1—C71.361 (4)C9—H9A0.9300
N1—C11.338 (4)C11—C121.477 (6)
N1—C101.398 (4)C11—H11A0.9700
N1—C111.488 (4)C11—H11B0.9700
N2—C81.403 (4)C12—H12A0.9600
N2—C131.462 (4)C12—H12B0.9600
N2—C161.465 (4)C12—H12C0.9600
N3—C151.486 (5)C13—C141.520 (4)
N3—C141.486 (4)C13—H13A0.9700
N3—H3A0.8600C13—H13B0.9700
N4—C211.332 (5)C14—H14A0.9700
N4—C171.342 (5)C14—H14B0.9700
O1W—H1WA0.86 (5)C15—C161.510 (5)
O1W—H1WB0.84 (4)C15—H15A0.9700
O1—C41.260 (4)C15—H15B0.9700
O2—C31.261 (4)C16—H16A0.9700
O2W—H2WB0.8500C16—H16B0.9700
O2W—H2WA0.730 (17)C17—C181.380 (6)
O3—C31.248 (4)C17—C17ii1.497 (7)
O3W—H3WA0.79 (5)C18—C191.386 (6)
O3W—H3WB0.75 (4)C18—H18A0.9300
C1—C21.376 (5)C19—C201.376 (7)
C1—H1A0.9300C19—H19A0.9300
C2—C41.418 (4)C20—C211.366 (6)
C2—C31.508 (4)C20—H20A0.9300
C4—C51.463 (4)C21—H21A0.9300
C5—C61.397 (4)
O2—Mn1—O2i180.00 (14)C8—C9—H9A119.4
O2—Mn1—O1i97.27 (9)C10—C9—H9A119.4
O2i—Mn1—O1i82.73 (9)N1—C10—C5118.4 (3)
O2—Mn1—O182.73 (9)N1—C10—C9121.4 (3)
O2i—Mn1—O197.27 (9)C5—C10—C9120.2 (3)
O1i—Mn1—O1180.00 (18)C12—C11—N1115.8 (3)
O2—Mn1—O1Wi91.93 (10)C12—C11—H11A108.3
O2i—Mn1—O1Wi88.07 (10)N1—C11—H11A108.3
O1i—Mn1—O1Wi90.90 (10)C12—C11—H11B108.3
O1—Mn1—O1Wi89.10 (10)N1—C11—H11B108.3
O2—Mn1—O1W88.07 (10)H11A—C11—H11B107.4
O2i—Mn1—O1W91.93 (10)C11—C12—H12A109.5
O1i—Mn1—O1W89.10 (10)C11—C12—H12B109.5
O1—Mn1—O1W90.90 (10)H12A—C12—H12B109.5
O1Wi—Mn1—O1W180.00 (16)C11—C12—H12C109.5
C1—N1—C10119.2 (3)H12A—C12—H12C109.5
C1—N1—C11121.4 (3)H12B—C12—H12C109.5
C10—N1—C11119.4 (3)N2—C13—C14110.3 (3)
C8—N2—C13116.8 (3)N2—C13—H13A109.6
C8—N2—C16117.3 (3)C14—C13—H13A109.6
C13—N2—C16111.3 (3)N2—C13—H13B109.6
C15—N3—C14110.4 (3)C14—C13—H13B109.6
C15—N3—H3A124.8H13A—C13—H13B108.1
C14—N3—H3A124.8N3—C14—C13111.6 (3)
C21—N4—C17117.9 (3)N3—C14—H14A109.3
Mn1—O1W—H1WA126 (3)C13—C14—H14A109.3
Mn1—O1W—H1WB121 (3)N3—C14—H14B109.3
H1WA—O1W—H1WB100 (3)C13—C14—H14B109.3
C4—O1—Mn1124.5 (2)H14A—C14—H14B108.0
C3—O2—Mn1130.6 (2)N3—C15—C16109.1 (3)
H2WB—O2W—H2WA117.1N3—C15—H15A109.9
H3WA—O3W—H3WB120 (4)C16—C15—H15A109.9
N1—C1—C2125.3 (3)N3—C15—H15B109.9
N1—C1—H1A117.3C16—C15—H15B109.9
C2—C1—H1A117.3H15A—C15—H15B108.3
C1—C2—C4119.1 (3)N2—C16—C15110.1 (3)
C1—C2—C3116.2 (3)N2—C16—H16A109.6
C4—C2—C3124.7 (3)C15—C16—H16A109.6
O3—C3—O2123.0 (3)N2—C16—H16B109.6
O3—C3—C2117.6 (3)C15—C16—H16B109.6
O2—C3—C2119.3 (3)H16A—C16—H16B108.2
O1—C4—C2126.3 (3)N4—C17—C18121.7 (4)
O1—C4—C5118.6 (3)N4—C17—C17ii116.9 (4)
C2—C4—C5115.1 (3)C18—C17—C17ii121.5 (4)
C6—C5—C10118.3 (3)C17—C18—C19119.0 (4)
C6—C5—C4119.6 (3)C17—C18—H18A120.5
C10—C5—C4122.1 (3)C19—C18—H18A120.5
C7—C6—C5120.1 (3)C20—C19—C18119.5 (4)
C7—C6—H6A119.9C20—C19—H19A120.2
C5—C6—H6A119.9C18—C19—H19A120.2
C6—C7—F1117.7 (3)C21—C20—C19117.5 (4)
C6—C7—C8123.4 (3)C21—C20—H20A121.2
F1—C7—C8118.9 (3)C19—C20—H20A121.2
C9—C8—N2122.8 (3)N4—C21—C20124.4 (4)
C9—C8—C7116.5 (3)N4—C21—H21A117.8
N2—C8—C7120.5 (3)C20—C21—H21A117.8
C8—C9—C10121.2 (3)
O2—Mn1—O1—C433.6 (3)C16—N2—C8—C7−52.3 (5)
O2i—Mn1—O1—C4−146.4 (3)C6—C7—C8—C9−5.4 (5)
O1Wi—Mn1—O1—C4125.6 (3)F1—C7—C8—C9173.0 (3)
O1W—Mn1—O1—C4−54.4 (3)C6—C7—C8—N2178.3 (3)
O1i—Mn1—O2—C3147.8 (3)F1—C7—C8—N2−3.3 (5)
O1—Mn1—O2—C3−32.2 (3)N2—C8—C9—C10177.1 (3)
O1Wi—Mn1—O2—C3−121.0 (3)C7—C8—C9—C100.8 (5)
O1W—Mn1—O2—C359.0 (3)C1—N1—C10—C5−2.0 (5)
C10—N1—C1—C24.2 (5)C11—N1—C10—C5−178.8 (3)
C11—N1—C1—C2−179.2 (3)C1—N1—C10—C9179.2 (3)
N1—C1—C2—C41.4 (5)C11—N1—C10—C92.5 (5)
N1—C1—C2—C3−178.6 (3)C6—C5—C10—N1175.6 (3)
Mn1—O2—C3—O3−165.0 (3)C4—C5—C10—N1−5.4 (5)
Mn1—O2—C3—C216.9 (5)C6—C5—C10—C9−5.7 (5)
C1—C2—C3—O313.4 (5)C4—C5—C10—C9173.4 (3)
C4—C2—C3—O3−166.6 (3)C8—C9—C10—N1−176.7 (3)
C1—C2—C3—O2−168.3 (3)C8—C9—C10—C54.6 (5)
C4—C2—C3—O211.6 (5)C1—N1—C11—C12−12.3 (6)
Mn1—O1—C4—C2−22.6 (5)C10—N1—C11—C12164.3 (4)
Mn1—O1—C4—C5157.9 (2)C8—N2—C13—C14−165.1 (3)
C1—C2—C4—O1172.2 (3)C16—N2—C13—C1456.5 (4)
C3—C2—C4—O1−7.8 (5)C15—N3—C14—C1355.3 (4)
C1—C2—C4—C5−8.3 (4)N2—C13—C14—N3−54.1 (4)
C3—C2—C4—C5171.8 (3)C14—N3—C15—C16−57.8 (4)
O1—C4—C5—C69.1 (5)C8—N2—C16—C15161.5 (3)
C2—C4—C5—C6−170.5 (3)C13—N2—C16—C15−60.3 (4)
O1—C4—C5—C10−170.0 (3)N3—C15—C16—N260.2 (4)
C2—C4—C5—C1010.4 (5)C21—N4—C17—C180.2 (6)
C10—C5—C6—C71.4 (5)C21—N4—C17—C17ii179.8 (4)
C4—C5—C6—C7−177.7 (3)N4—C17—C18—C19−1.0 (7)
C5—C6—C7—F1−174.1 (3)C17ii—C17—C18—C19179.4 (5)
C5—C6—C7—C84.3 (5)C17—C18—C19—C200.3 (8)
C13—N2—C8—C9−4.2 (5)C18—C19—C20—C211.1 (8)
C16—N2—C8—C9131.6 (4)C17—N4—C21—C201.4 (7)
C13—N2—C8—C7171.9 (3)C19—C20—C21—N4−2.0 (8)

Symmetry codes: (i) −x, −y, −z; (ii) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O3iii0.862.232.725 (4)117
N3—H3A···O3W0.862.542.992 (4)114
O2W—H2WB···O2Wiv0.851.972.789 (5)163
O3W—H3WA···O3Wv0.78 (2)2.03 (2)2.781 (6)162 (6)
O3W—H3WB···N30.75 (2)2.32 (4)2.992 (4)149 (5)
O1W—H1WA···N40.86 (2)1.96 (2)2.813 (4)168 (5)
O1W—H1WB···O2W0.84 (2)2.24 (3)3.050 (4)162 (5)
O2W—H2WA···O1W0.73 (2)2.65 (4)3.050 (4)117 (4)

Symmetry codes: (iii) x−1, y−1, z; (iv) −x, −y+1, −z+1; (v) −x−1, −y−1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2812).

References

  • Bruker (2004). SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dukhande, V. V., Malthankar-Phatak, G. H., Hugus, J. J., Daniels, C. K. & Lai, J. C. K. (2006). Neurochem. Res.31, 1349–1357. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography