PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m812.
Published online 2009 June 24. doi:  10.1107/S1600536809023253
PMCID: PMC2969418

Diaqua­bis(tetra­zolo[1,5-a]pyridine-8-carboxyl­ato-κ2 N 1,O)manganese(II) dihydrate

Abstract

In the title compound, [Mn(C6H3N4O2)2(H2O)2]·2H2O, the MnII atom is located on a twofold rotation axis and is octa­hedrally coordinated by the N and O atoms of the chelating tetra­zolo[1,5-a]pyridine-8-carboxyl­ate anions and the O atoms of two water mol­ecules. Hydrogen bonds of the O—H(...)O and O—H(...)N types lead to the formation of layers parallel to (100).

Related literature

For background to coordination compounds, see: Kulynych & Shimizu (2002 [triangle]); Liu et al. (2001 [triangle]); Xue & Liu (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m812-scheme1.jpg

Experimental

Crystal data

  • [Mn(C6H3N4O2)2(H2O)2]·2H2O
  • M r = 453.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m812-efi2.jpg
  • a = 19.041 (4) Å
  • b = 11.694 (2) Å
  • c = 7.5371 (15) Å
  • V = 1678.3 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.85 mm−1
  • T = 293 K
  • 0.5 × 0.5 × 0.5 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.60, T max = 0.662
  • 16422 measured reflections
  • 1925 independent reflections
  • 1755 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.081
  • S = 1.20
  • 1925 reflections
  • 132 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SCXmini (Rigaku, 2006 [triangle]); cell refinement: PROCESS-AUTO (Rigaku, 1998 [triangle]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023253/dn2463sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023253/dn2463Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Coordination complexes have attracted great attention in recent years. (Kulynych & Shimizu, 2002). Polydentate ligand have some heteroatom can coordinated to metal in different ways, and can form Hydrogen bonds between to give supermolecule net(Liu et al., 2001). The tetrazolo(1,5-a)pyridine-8-carboxylate have multi-coordinated position and may behavs as a polydentate ligand. The related maganese structure with two water molecules as solvent has been recently reported (Xue & Liu, 2009).

In the title compound, the manganese atom is located on a two fold axis and octahedrally coordinated by two water molecules and two bidentate N,O tetrazolo(1,5-a)pyridine-8-carboxylate,(Fig. 1).

Each tetrazolo(1,5-a) pyridine-8-carboxylate chelates to one manganese atom. One type of water coordinates to the manganese atom whereas the other acts as lattice water. A two dimensional supramolecular network parallel to the (1 0 0) plane, is formed by the hydrogen bond interactions between the water molecules and the nitrogen of the tetrazolo(1,5-a)pyridine-8-carboxylate ligands (Table 1, Fig. 2).

The structure is closely related to the dihydrate complex (Xue & Liu, 2009), the only difference being the occurence of two solvate water molecules in the previous structure.

Experimental

A mixture of manganeset(II)nitrate and sodium azide (1 mmol), 2-chloronicotinic acid(0.5 mmol), in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 363 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature.Yield 20% based on manganese(II). Caution: Azides may be explosive. Although we have met no problems in this work, only a small amount of them should be prepared and handled with great caution.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.39 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement they were treated as riding on their parent O atoms.

Figures

Fig. 1.
A view of the title compound showing the coordination of Mn atom with the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms and the solvate water molecule have been omitted for clarity. [ Symmetry codes: (i) -x+1/2, -y, ...
Fig. 2.
Partial packing view showing the formation of layers parallel to the (1 0 0) plane. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines.

Crystal data

[Mn(C6H3N4O2)2(H2O)2]·2H2OF(000) = 924
Mr = 453.25Dx = 1.794 Mg m3
Orthorhombic, PnnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2bcCell parameters from 15650 reflections
a = 19.041 (4) Åθ = 3.2–27.9°
b = 11.694 (2) ŵ = 0.85 mm1
c = 7.5371 (15) ÅT = 293 K
V = 1678.3 (6) Å3Block, yellow
Z = 40.5 × 0.5 × 0.5 mm

Data collection

Rigaku SCXmini diffractometer1925 independent reflections
Radiation source: fine-focus sealed tube1755 reflections with I > 2σ(I)
graphiteRint = 0.029
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −24→24
Tmin = 0.60, Tmax = 0.662k = −15→15
16422 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.20w = 1/[σ2(Fo2) + (0.0386P)2 + 0.6168P] where P = (Fo2 + 2Fc2)/3
1925 reflections(Δ/σ)max = 0.001
132 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.25000.00000.86700 (4)0.01925 (12)
O10.19724 (6)0.09901 (10)0.66846 (16)0.0263 (3)
O1W0.21023 (6)0.11467 (10)1.06874 (17)0.0294 (3)
H110.18880.17461.03590.044*
H120.23510.12701.15990.044*
O20.12016 (6)0.21215 (10)0.53402 (17)0.0306 (3)
N10.14757 (7)−0.09265 (11)0.85974 (18)0.0233 (3)
N20.12692 (8)−0.18779 (12)0.9450 (2)0.0279 (3)
N30.05962 (8)−0.20081 (12)0.9411 (2)0.0285 (3)
N40.03454 (7)−0.10924 (11)0.84998 (17)0.0212 (3)
C10.13563 (9)0.13028 (13)0.6301 (2)0.0201 (3)
C20.07619 (8)0.05909 (13)0.7039 (2)0.0194 (3)
C30.00732 (9)0.08539 (14)0.6756 (2)0.0244 (3)
H3−0.00360.15280.61610.029*
C4−0.04836 (9)0.01396 (14)0.7335 (2)0.0276 (4)
H4−0.09460.03550.71220.033*
C5−0.03481 (9)−0.08466 (15)0.8190 (2)0.0261 (4)
H5−0.0706−0.13360.85510.031*
C60.08933 (8)−0.04294 (13)0.7994 (2)0.0185 (3)
O2W0.28824 (7)0.12927 (11)0.37555 (17)0.0354 (3)
H210.25900.11320.46350.053*
H220.31030.17910.40790.053*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.01548 (18)0.02138 (19)0.02089 (19)0.00086 (12)0.0000.000
O10.0199 (6)0.0302 (6)0.0287 (6)−0.0007 (5)−0.0003 (5)0.0108 (5)
O1W0.0325 (7)0.0280 (6)0.0277 (6)0.0091 (5)−0.0033 (5)−0.0048 (5)
O20.0297 (6)0.0260 (6)0.0362 (7)−0.0035 (5)−0.0053 (6)0.0141 (5)
N10.0222 (7)0.0181 (6)0.0295 (7)−0.0005 (5)−0.0016 (5)0.0066 (5)
N20.0295 (7)0.0215 (7)0.0326 (8)−0.0017 (6)0.0003 (6)0.0083 (6)
N30.0312 (8)0.0219 (7)0.0324 (8)−0.0038 (6)0.0002 (6)0.0079 (6)
N40.0215 (7)0.0194 (6)0.0226 (7)−0.0044 (5)0.0011 (5)0.0018 (5)
C10.0230 (8)0.0190 (7)0.0185 (7)−0.0021 (6)−0.0002 (6)0.0016 (6)
C20.0224 (8)0.0175 (7)0.0183 (7)−0.0011 (6)0.0004 (6)0.0007 (6)
C30.0248 (8)0.0245 (8)0.0239 (8)0.0018 (6)−0.0025 (6)0.0016 (6)
C40.0171 (7)0.0369 (9)0.0289 (9)0.0015 (7)−0.0009 (7)−0.0018 (7)
C50.0178 (8)0.0326 (9)0.0279 (8)−0.0068 (7)0.0027 (7)−0.0021 (7)
C60.0177 (7)0.0187 (7)0.0190 (7)−0.0023 (6)0.0001 (6)−0.0003 (6)
O2W0.0383 (8)0.0386 (7)0.0293 (7)−0.0081 (6)0.0032 (5)−0.0043 (5)

Geometric parameters (Å, °)

Mn1—O12.1422 (12)N3—N41.3588 (19)
Mn1—O1i2.1422 (12)N4—C61.3546 (19)
Mn1—O1W2.1642 (12)N4—C51.372 (2)
Mn1—O1Wi2.1642 (12)C1—C21.511 (2)
Mn1—N12.2317 (14)C2—C31.364 (2)
Mn1—N1i2.2317 (14)C2—C61.416 (2)
O1—C11.262 (2)C3—C41.418 (2)
O1W—H110.8477C3—H30.9300
O1W—H120.8471C4—C51.346 (2)
O2—C11.2362 (19)C4—H40.9300
N1—C61.332 (2)C5—H50.9300
N1—N21.3438 (19)O2W—H210.8853
N2—N31.291 (2)O2W—H220.7585
O1—Mn1—O1i91.38 (7)N2—N3—N4105.51 (12)
O1—Mn1—O1W89.53 (5)C6—N4—N3108.82 (13)
O1i—Mn1—O1W171.80 (5)C6—N4—C5125.01 (14)
O1—Mn1—O1Wi171.80 (5)N3—N4—C5126.13 (14)
O1i—Mn1—O1Wi89.53 (5)O2—C1—O1125.44 (15)
O1W—Mn1—O1Wi90.73 (7)O2—C1—C2117.64 (14)
O1—Mn1—N180.53 (5)O1—C1—C2116.89 (13)
O1i—Mn1—N197.49 (5)C3—C2—C6116.08 (14)
O1W—Mn1—N190.70 (5)C3—C2—C1122.57 (14)
O1Wi—Mn1—N191.27 (5)C6—C2—C1121.27 (14)
O1—Mn1—N1i97.49 (5)C2—C3—C4122.53 (15)
O1i—Mn1—N1i80.53 (5)C2—C3—H3118.7
O1W—Mn1—N1i91.27 (5)C4—C3—H3118.7
O1Wi—Mn1—N1i90.70 (5)C5—C4—C3120.56 (16)
N1—Mn1—N1i177.19 (7)C5—C4—H4119.7
C1—O1—Mn1138.78 (10)C3—C4—H4119.7
Mn1—O1W—H11118.4C4—C5—N4116.47 (15)
Mn1—O1W—H12118.7C4—C5—H5121.8
H11—O1W—H12111.4N4—C5—H5121.8
C6—N1—N2106.31 (13)N1—C6—N4107.18 (13)
C6—N1—Mn1121.61 (10)N1—C6—C2133.50 (14)
N2—N1—Mn1130.24 (11)N4—C6—C2119.29 (14)
N3—N2—N1112.16 (13)H21—O2W—H22105.7

Symmetry codes: (i) −x+1/2, −y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H11···O2ii0.851.932.7644 (17)166
O1W—H12···O2Wiii0.851.912.7538 (19)171
O2W—H21···O10.891.952.8287 (18)172
O2W—H22···N2iv0.762.253.003 (2)169

Symmetry codes: (ii) x, −y+1/2, −z+3/2; (iii) x, y, z+1; (iv) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2463).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Kulynych, A. K. & Shimizu, G. K. H. (2002). CrystEngComm, 4, 102–105.
  • Liu, C.-M., Gao, S., Hu, H.-M. & Wang, Z.-M. (2001). Chem Commun pp. 1636–1637. [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Rigaku (2006). SCXmini Benchtop Crystallography System Software Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xue, M. & Liu, F.-C. (2009). Acta Cryst. E65, m684. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography