PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m785.
Published online 2009 June 17. doi:  10.1107/S1600536809022430
PMCID: PMC2969416

Tetra­aqua­bis(3-carboxyl­atopyridine N-oxide-κO 3)cadmium(II)

Abstract

In the title complex, [Cd(C6H4NO3)2(H2O)4], the CdII atom is situated on a crystallographic centre of inversion. The CdII atom shows a slightly distorted octa­hedral geometry and is coordinated by four O atoms from water mol­ecules and two O atoms from deprotonated carboxyl groups of nicotinic acid N-oxide ligands. The mononuclear complex mol­ecules are linked by O—H(...)O hydrogen bonds, forming a three-dimensional network structure.

Related literature

For a related stucture, see: Hilkka et al. (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m785-scheme1.jpg

Experimental

Crystal data

  • [Cd(C6H4NO3)2(H2O)4]
  • M r = 460.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m785-efi1.jpg
  • a = 8.896 (2) Å
  • b = 13.284 (3) Å
  • c = 6.902 (1) Å
  • β = 106.95 (3)°
  • V = 780.2 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.46 mm−1
  • T = 293 K
  • 0.24 × 0.24 × 0.24 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.705, T max = 0.712
  • 3886 measured reflections
  • 1371 independent reflections
  • 1216 reflections with I > 2σ(I)
  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.017
  • wR(F 2) = 0.047
  • S = 1.11
  • 1371 reflections
  • 115 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022430/im2121sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022430/im2121Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported Beijing Municipal Natural Science Foundation (grant No. 2082004).

supplementary crystallographic information

Comment

The behaviour of nicotinic acid N-oxide ligand towards transition metals has been studied (Hilkka et al., 1983). Herein, we prepared a new complex with the similar structure.

The title complex (Fig. 1) is made up of tetraaquametal cations and nicotinate N-oxide anion. The CdII centre shows a slightly distorted octahedral geometry and is six-coordinated by four O atoms from water molecules and two O atoms from deprotonated carboxylic groups of nicotinic acid N-oxide ligands. The O atoms of the N-oxide function bridge two water ligands of adjacent complex molecules via O—H···O hydrogen bonds, forming infinite chains along c axis (Fig. 2). Otherwise, the chains are linked by additional O—H···O hydrogen bonds observed between carboxyl O atoms and H atoms of coordinated water molecules. In conclusion, the mononucear complexes are linked by O—H···O hydrogen bonds, forming a three-dimensional network structure.

Experimental

A solution containing a 1 : 1 : 2 molar ratio of nicotinic acid N-oxide, LiOH × H2O and Cd(NO3)2 × 4 H2O in water was sealed in a 25 ml teflon reactor and kept at 140° for 3 days. The mixture was stepwise cooled to 40° with a rate of 10° per hour and was then allowed to cool to room temperature naturally. Colorless block-shaped crystals suitable for X-ray investagation were collected from the final mixture.

Refinement

All H atoms were fixed geometrically (C—H = 0.93 Å, O—H = 0.85–0.86 Å) and treated as riding with Uiso(H) = 1.2Ueq(carrier).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-hydrogen atoms. Symmetry related atoms labelled A have the symmetry code A = -x + 1, -y + 1, -z.
Fig. 2.
Supramolecular structure of the title compound realized by O—H···O hydrogen bond.

Crystal data

[Cd(C6H4NO3)2(H2O)4]F(000) = 460
Mr = 460.67Dx = 1.961 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2694 reflections
a = 8.896 (2) Åθ = 2.4–30.8°
b = 13.284 (3) ŵ = 1.46 mm1
c = 6.902 (1) ÅT = 293 K
β = 106.95 (3)°Block, colorless
V = 780.2 (3) Å30.24 × 0.24 × 0.24 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer1371 independent reflections
Radiation source: fine-focus sealed tube1216 reflections with I > 2σ(I)
graphiteRint = 0.013
[var phi] and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −10→9
Tmin = 0.705, Tmax = 0.712k = −15→13
3886 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.0239P)2 + 0.3039P] where P = (Fo2 + 2Fc2)/3
1371 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.50000.50000.00000.02694 (9)
O10.69494 (17)0.61434 (10)0.0646 (2)0.0322 (3)
O20.54243 (17)0.73900 (11)−0.1003 (2)0.0356 (4)
O30.84106 (18)1.04656 (11)0.1475 (2)0.0351 (4)
C50.7630 (2)0.88034 (15)0.0896 (3)0.0258 (4)
H5A0.66230.90170.01950.031*
C10.7954 (2)0.77885 (14)0.1108 (3)0.0234 (4)
O1W0.6079 (2)0.42109 (12)0.3026 (2)0.0475 (5)
C60.6669 (2)0.70560 (15)0.0175 (3)0.0257 (4)
C41.0221 (2)0.92024 (16)0.2703 (3)0.0323 (5)
H4A1.09880.96850.32320.039*
O2W0.37122 (19)0.60651 (11)0.1620 (2)0.0387 (4)
N10.8750 (2)0.94858 (13)0.1691 (3)0.0263 (4)
C20.9455 (3)0.74878 (15)0.2168 (3)0.0293 (5)
H2A0.96990.68070.23490.035*
C31.0585 (2)0.82017 (17)0.2953 (3)0.0349 (5)
H3A1.16000.80040.36560.042*
H1WA0.58310.35970.27350.042*
H1WB0.69090.42340.40330.042*
H2WA0.30090.58610.21510.042*
H2WB0.41820.65430.24060.042*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02508 (13)0.02246 (14)0.02930 (14)−0.00329 (8)0.00169 (9)−0.00103 (8)
O10.0296 (8)0.0189 (7)0.0431 (9)−0.0038 (6)0.0024 (7)0.0023 (6)
O20.0315 (8)0.0226 (8)0.0428 (9)−0.0029 (6)−0.0046 (7)0.0027 (7)
O30.0339 (8)0.0176 (7)0.0483 (9)−0.0020 (6)0.0034 (7)−0.0013 (7)
C50.0213 (10)0.0232 (10)0.0301 (11)−0.0017 (8)0.0031 (8)−0.0001 (8)
C10.0270 (10)0.0196 (10)0.0235 (10)−0.0022 (8)0.0072 (8)−0.0001 (8)
O1W0.0593 (11)0.0263 (8)0.0391 (9)−0.0105 (8)−0.0133 (8)0.0035 (7)
C60.0279 (11)0.0219 (11)0.0269 (10)−0.0035 (8)0.0073 (9)−0.0012 (8)
C40.0241 (11)0.0301 (12)0.0378 (12)−0.0073 (9)0.0015 (9)−0.0026 (9)
O2W0.0365 (9)0.0331 (8)0.0477 (10)−0.0077 (7)0.0143 (7)−0.0101 (7)
N10.0269 (9)0.0200 (9)0.0300 (9)−0.0021 (7)0.0052 (7)−0.0007 (7)
C20.0314 (11)0.0217 (11)0.0326 (12)0.0014 (8)0.0061 (9)0.0013 (9)
C30.0239 (11)0.0328 (12)0.0420 (13)0.0008 (9)0.0006 (9)0.0025 (10)

Geometric parameters (Å, °)

Cd1—O1i2.2499 (14)C1—C21.382 (3)
Cd1—O12.2499 (14)C1—C61.496 (3)
Cd1—O1Wi2.2836 (16)O1W—H1WA0.8537
Cd1—O1W2.2836 (16)O1W—H1WB0.8538
Cd1—O2W2.3045 (16)C4—N11.345 (3)
Cd1—O2Wi2.3045 (16)C4—C31.367 (3)
O1—C61.261 (2)C4—H4A0.9300
O2—C61.248 (2)O2W—H2WA0.8559
O3—N11.335 (2)O2W—H2WB0.8603
C5—N11.340 (3)C2—C31.373 (3)
C5—C11.377 (3)C2—H2A0.9300
C5—H5A0.9300C3—H3A0.9300
O1i—Cd1—O1180.0Cd1—O1W—H1WA102.3
O1i—Cd1—O1Wi91.98 (6)Cd1—O1W—H1WB139.5
O1—Cd1—O1Wi88.02 (6)H1WA—O1W—H1WB109.2
O1i—Cd1—O1W88.02 (6)O2—C6—O1125.51 (19)
O1—Cd1—O1W91.98 (6)O2—C6—C1118.05 (17)
O1Wi—Cd1—O1W180.00 (7)O1—C6—C1116.44 (18)
O1i—Cd1—O2W92.70 (6)N1—C4—C3119.74 (19)
O1—Cd1—O2W87.30 (6)N1—C4—H4A120.1
O1Wi—Cd1—O2W91.49 (7)C3—C4—H4A120.1
O1W—Cd1—O2W88.51 (7)Cd1—O2W—H2WA122.8
O1i—Cd1—O2Wi87.30 (6)Cd1—O2W—H2WB122.7
O1—Cd1—O2Wi92.70 (6)H2WA—O2W—H2WB104.2
O1Wi—Cd1—O2Wi88.51 (7)O3—N1—C5119.82 (16)
O1W—Cd1—O2Wi91.49 (7)O3—N1—C4119.00 (16)
O2W—Cd1—O2Wi180.0C5—N1—C4121.18 (18)
C6—O1—Cd1120.98 (13)C3—C2—C1119.49 (19)
N1—C5—C1120.73 (18)C3—C2—H2A120.3
N1—C5—H5A119.6C1—C2—H2A120.3
C1—C5—H5A119.6C4—C3—C2120.2 (2)
C5—C1—C2118.64 (18)C4—C3—H3A119.9
C5—C1—C6118.74 (18)C2—C3—H3A119.9
C2—C1—C6122.62 (18)
O1i—Cd1—O1—C6178 (100)C5—C1—C6—O1−170.21 (19)
O1Wi—Cd1—O1—C639.82 (16)C2—C1—C6—O110.0 (3)
O1W—Cd1—O1—C6−140.18 (16)C1—C5—N1—O3−179.78 (18)
O2W—Cd1—O1—C6−51.77 (16)C1—C5—N1—C40.4 (3)
O2Wi—Cd1—O1—C6128.23 (16)C3—C4—N1—O3179.46 (19)
N1—C5—C1—C20.4 (3)C3—C4—N1—C5−0.7 (3)
N1—C5—C1—C6−179.34 (18)C5—C1—C2—C3−1.0 (3)
Cd1—O1—C6—O2−15.1 (3)C6—C1—C2—C3178.8 (2)
Cd1—O1—C6—C1165.45 (13)N1—C4—C3—C20.2 (4)
C5—C1—C6—O210.3 (3)C1—C2—C3—C40.7 (3)
C2—C1—C6—O2−169.5 (2)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.851.902.678 (2)151
O1W—H1WB···O3ii0.851.862.697 (2)165
O2W—H2WA···O3iii0.861.862.716 (2)175
O2W—H2WB···O2ii0.861.932.787 (2)173

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, −y+3/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2121).

References

  • Bruker (1998). SMART, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hilkka, K., Univ, D. C. & Finland, J. J. (1983). Acta Chem. Scand. Ser. A, 37, 697–702.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography