PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m829.
Published online 2009 June 27. doi:  10.1107/S1600536809023459
PMCID: PMC2969412

Dichloridobis[1-(2-methyl­benzimidazol-1-ylmethyl-κN 3)benzotriazole]mercury(II)

Abstract

In the title compound, [HgCl2(C15H13N5)2], the HgII atom is located on a twofold rotation axis and resides in a distorted tetra­hedral coordination environment composed of two Cl atoms and two N atoms from two 1-(2-methyl­benzimidazol-1-ylmeth­yl)benzotriazole ligands.

Related literature

For metal complexes of similar N-heterocyclic ligands, see: Fan et al. (2003 [triangle]); Hoskins et al. (1997 [triangle]); Makoto et al. (2005 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-0m829-scheme1.jpg

Experimental

Crystal data

  • [HgCl2(C15H13N5)2]
  • M r = 798.10
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m829-efi1.jpg
  • a = 15.612 (3) Å
  • b = 12.883 (3) Å
  • c = 14.751 (3) Å
  • β = 97.49 (3)°
  • V = 2941.5 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.46 mm−1
  • T = 293 K
  • 0.22 × 0.18 × 0.16 mm

Data collection

  • Rigaku Saturn724 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006 [triangle]) T min = 0.380, T max = 0.476 (expected range = 0.334–0.418)
  • 14609 measured reflections
  • 2587 independent reflections
  • 2379 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.062
  • S = 1.09
  • 2587 reflections
  • 196 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023459/ng2600sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023459/ng2600Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Hou Hong-Wei of Zhengzhou University for his help.

supplementary crystallographic information

Comment

The complexation of metal ions by nitrogen heterocyclic compounds has been extensively studied. Owing to the unique ability of the heterocyclic compounds to form stable chelates with various coordiantion modes and its biological activity, many crystal ctructures have been determined (Fan, et al., 2003; Hoskins, et al. 1997; Makoto,et al.,2005). N-(2-methyl-benzoimidazol-3-yl-methyl)-benzotriazole, has the benzotriazole group and the benzoimidazole group and can offer possibilities to form complicated coordiantion compounds. However, the coordiantion chemistry and structural properties of metal complexes with the ligand has never been documented to data. In this paper, we reported the synthesis and crystal structure of the title compound, (I). In (I) (Fig. 1), the HgII atom is coordinated by two Cl atoms and two N atoms from the ligand to form a distorted tetrahedral coordination environment. Each ligand is coordianted to the Hg atom in a monodentate fashion. In the ligand, the benzotriazole group and benzotriazole group is bridged by a methylene, with an N—C—N angle of 111.3 (4)°. The benzotriazole group and the benzoimidazole group are almost perpendicular with each other, with the dihedral angle being 89.9°. Thus, two ligands are bridged by the Hg atom to form a cage-like compound.

Experimental

The ligand N-(2-methyl-benzoimidazol-3-yl-methyl)-benzotriazole (0.04 mmol, 0.118 g) in MeOH (6 ml) was added dropwise to a solution of HgCl2 (0.4 mmol, 0.108 g) in methanol (3 ml). The precipitate was filtered and the resulting solution was allowed to stand at room temperature in the dark. After one week good quality colorless crystals were obtained from the filtrate and dried in air.

Refinement

H atoms were generated geometrically, with C-H = 0.96, 0.86 and 0.93Å for methyl, N and aromatic H, respectively, and constrained to ride their parent atoms with Uiso(H) = x times Ueq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
View of the title complex, showing the labeling of the non-H atoms and 30% probability ellipsolids.

Crystal data

[HgCl2(C15H13N5)2]F(000) = 1560
Mr = 798.10Dx = 1.802 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4239 reflections
a = 15.612 (3) Åθ = 2.1–29.1°
b = 12.883 (3) ŵ = 5.46 mm1
c = 14.751 (3) ÅT = 293 K
β = 97.49 (3)°Prism, colorless
V = 2941.5 (11) Å30.22 × 0.18 × 0.16 mm
Z = 4

Data collection

Rigaku Saturn724 diffractometer2587 independent reflections
Radiation source: fine-focus sealed tube2379 reflections with I > 2σ(I)
graphiteRint = 0.051
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.4°
dtprofit.ref scansh = −18→18
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006)k = −15→15
Tmin = 0.380, Tmax = 0.476l = −17→17
14609 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0229P)2 + 4.6614P] where P = (Fo2 + 2Fc2)/3
2587 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Hg10.5000−0.10389 (2)0.25000.04638 (11)
Cl10.62989 (9)−0.19849 (10)0.30815 (8)0.0585 (4)
N10.4757 (2)0.0231 (3)0.3545 (2)0.0389 (9)
N20.4113 (2)0.1501 (3)0.4213 (2)0.0380 (9)
N30.3561 (2)0.3232 (3)0.4176 (2)0.0439 (10)
N40.3539 (3)0.3999 (4)0.4808 (3)0.0606 (12)
N50.3651 (3)0.4882 (4)0.4425 (3)0.0642 (13)
C10.3170 (3)0.0391 (4)0.3110 (4)0.0577 (14)
H1A0.3243−0.02050.27370.087*
H1B0.29410.09560.27280.087*
H1C0.27780.02260.35380.087*
C20.4021 (3)0.0696 (4)0.3614 (3)0.0392 (11)
C30.5386 (3)0.0762 (3)0.4139 (3)0.0359 (11)
C40.6271 (3)0.0600 (4)0.4337 (3)0.0436 (11)
H40.65470.00660.40640.052*
C50.6722 (3)0.1269 (4)0.4956 (3)0.0513 (13)
H50.73170.11910.50950.062*
C60.6311 (3)0.2054 (4)0.5377 (3)0.0541 (13)
H60.66370.24810.57990.065*
C70.5436 (3)0.2220 (4)0.5189 (3)0.0452 (12)
H70.51630.27500.54690.054*
C80.4984 (3)0.1560 (3)0.4564 (3)0.0348 (10)
C90.3430 (3)0.2172 (4)0.4447 (3)0.0471 (12)
H9A0.28780.19260.41450.057*
H9B0.34140.21460.51020.057*
C100.3696 (3)0.3647 (4)0.3355 (3)0.0420 (11)
C110.3763 (3)0.3232 (5)0.2497 (3)0.0568 (14)
H110.37190.25230.23810.068*
C120.3900 (3)0.3936 (5)0.1833 (4)0.0636 (16)
H120.39460.36970.12460.076*
C130.3973 (3)0.5008 (6)0.2009 (4)0.0688 (17)
H130.40740.54560.15390.083*
C140.3898 (3)0.5404 (5)0.2845 (4)0.0642 (16)
H140.39430.61140.29590.077*
C150.3752 (3)0.4707 (4)0.3524 (3)0.0496 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.05294 (19)0.03316 (15)0.05032 (18)0.000−0.00348 (13)0.000
Cl10.0714 (9)0.0507 (8)0.0509 (7)0.0232 (7)−0.0012 (7)0.0044 (6)
N10.039 (2)0.034 (2)0.044 (2)0.0053 (18)0.0057 (18)−0.0056 (17)
N20.035 (2)0.039 (2)0.040 (2)0.0014 (17)0.0063 (18)−0.0022 (18)
N30.050 (2)0.045 (2)0.037 (2)0.0158 (19)0.0079 (19)−0.0040 (19)
N40.080 (3)0.058 (3)0.045 (2)0.023 (3)0.011 (2)−0.010 (2)
N50.085 (4)0.048 (3)0.060 (3)0.014 (3)0.006 (3)−0.003 (2)
C10.042 (3)0.063 (4)0.064 (3)−0.001 (3)−0.005 (3)−0.013 (3)
C20.040 (3)0.040 (3)0.038 (3)−0.005 (2)0.004 (2)0.001 (2)
C30.041 (3)0.034 (2)0.032 (2)−0.002 (2)0.003 (2)−0.0002 (19)
C40.036 (3)0.046 (3)0.049 (3)0.004 (2)0.007 (2)−0.004 (2)
C50.038 (3)0.057 (3)0.058 (3)−0.006 (2)0.005 (2)−0.001 (3)
C60.054 (3)0.057 (3)0.049 (3)−0.010 (3)−0.001 (3)−0.010 (3)
C70.051 (3)0.039 (3)0.046 (3)0.001 (2)0.007 (2)−0.006 (2)
C80.040 (3)0.032 (2)0.032 (2)−0.001 (2)0.005 (2)0.001 (2)
C90.044 (3)0.056 (3)0.045 (3)0.012 (2)0.018 (2)0.000 (2)
C100.034 (3)0.054 (3)0.039 (3)0.009 (2)0.007 (2)−0.001 (2)
C110.053 (3)0.074 (4)0.043 (3)0.009 (3)0.007 (3)−0.004 (3)
C120.047 (3)0.107 (5)0.036 (3)0.005 (3)0.004 (2)−0.002 (3)
C130.043 (3)0.094 (5)0.068 (4)0.001 (3)0.001 (3)0.033 (4)
C140.050 (3)0.064 (4)0.076 (4)0.006 (3)−0.001 (3)0.016 (3)
C150.047 (3)0.054 (3)0.047 (3)0.014 (3)0.002 (2)0.003 (3)

Geometric parameters (Å, °)

Hg1—N12.313 (3)C4—C51.380 (7)
Hg1—N1i2.313 (3)C4—H40.9300
Hg1—Cl1i2.4248 (13)C5—C61.387 (7)
Hg1—Cl12.4248 (13)C5—H50.9300
N1—C21.311 (5)C6—C71.375 (6)
N1—C31.405 (5)C6—H60.9300
N2—C21.357 (6)C7—C81.378 (6)
N2—C81.392 (5)C7—H70.9300
N2—C91.450 (5)C9—H9A0.9700
N3—N41.362 (5)C9—H9B0.9700
N3—C101.366 (6)C10—C151.389 (7)
N3—C91.444 (6)C10—C111.390 (6)
N4—N51.293 (6)C11—C121.372 (7)
N5—C151.377 (6)C11—H110.9300
C1—C21.488 (6)C12—C131.407 (8)
C1—H1A0.9600C12—H120.9300
C1—H1B0.9600C13—C141.354 (8)
C1—H1C0.9600C13—H130.9300
C3—C41.391 (6)C14—C151.387 (7)
C3—C81.395 (6)C14—H140.9300
N1—Hg1—N1i89.97 (18)C6—C5—H5119.1
N1—Hg1—Cl1i112.90 (10)C7—C6—C5121.8 (5)
N1i—Hg1—Cl1i108.78 (10)C7—C6—H6119.1
N1—Hg1—Cl1108.78 (10)C5—C6—H6119.1
N1i—Hg1—Cl1112.90 (10)C6—C7—C8116.6 (4)
Cl1i—Hg1—Cl1119.65 (7)C6—C7—H7121.7
C2—N1—C3106.1 (4)C8—C7—H7121.7
C2—N1—Hg1126.6 (3)C7—C8—N2132.3 (4)
C3—N1—Hg1126.7 (3)C7—C8—C3122.3 (4)
C2—N2—C8107.5 (4)N2—C8—C3105.4 (4)
C2—N2—C9126.3 (4)N3—C9—N2111.3 (4)
C8—N2—C9126.2 (4)N3—C9—H9A109.4
N4—N3—C10110.1 (4)N2—C9—H9A109.4
N4—N3—C9118.7 (4)N3—C9—H9B109.4
C10—N3—C9131.2 (4)N2—C9—H9B109.4
N5—N4—N3108.8 (4)H9A—C9—H9B108.0
N4—N5—C15108.4 (4)N3—C10—C15103.8 (4)
C2—C1—H1A109.5N3—C10—C11134.1 (5)
C2—C1—H1B109.5C15—C10—C11122.1 (5)
H1A—C1—H1B109.5C12—C11—C10115.7 (5)
C2—C1—H1C109.5C12—C11—H11122.2
H1A—C1—H1C109.5C10—C11—H11122.2
H1B—C1—H1C109.5C11—C12—C13122.2 (5)
N1—C2—N2112.3 (4)C11—C12—H12118.9
N1—C2—C1125.1 (4)C13—C12—H12118.9
N2—C2—C1122.6 (4)C14—C13—C12121.6 (5)
C4—C3—C8120.6 (4)C14—C13—H13119.2
C4—C3—N1130.7 (4)C12—C13—H13119.2
C8—C3—N1108.7 (4)C13—C14—C15117.1 (6)
C5—C4—C3116.9 (4)C13—C14—H14121.4
C5—C4—H4121.6C15—C14—H14121.4
C3—C4—H4121.6N5—C15—C14129.9 (5)
C4—C5—C6121.8 (5)N5—C15—C10108.8 (4)
C4—C5—H5119.1C14—C15—C10121.3 (5)
N1i—Hg1—N1—C286.5 (4)C9—N2—C8—C7−0.3 (8)
Cl1i—Hg1—N1—C2−24.0 (4)C2—N2—C8—C30.3 (5)
Cl1—Hg1—N1—C2−159.3 (3)C9—N2—C8—C3−180.0 (4)
N1i—Hg1—N1—C3−83.5 (3)C4—C3—C8—C70.2 (7)
Cl1i—Hg1—N1—C3166.0 (3)N1—C3—C8—C7179.9 (4)
Cl1—Hg1—N1—C330.7 (4)C4—C3—C8—N2179.9 (4)
C10—N3—N4—N50.3 (6)N1—C3—C8—N2−0.3 (5)
C9—N3—N4—N5−178.6 (4)N4—N3—C9—N2−128.3 (4)
N3—N4—N5—C15−0.3 (6)C10—N3—C9—N253.1 (7)
C3—N1—C2—N20.0 (5)C2—N2—C9—N3−116.4 (5)
Hg1—N1—C2—N2−171.7 (3)C8—N2—C9—N363.9 (6)
C3—N1—C2—C1−179.6 (4)N4—N3—C10—C15−0.2 (5)
Hg1—N1—C2—C18.7 (7)C9—N3—C10—C15178.5 (5)
C8—N2—C2—N1−0.2 (5)N4—N3—C10—C11−179.2 (5)
C9—N2—C2—N1−179.9 (4)C9—N3—C10—C11−0.4 (9)
C8—N2—C2—C1179.4 (4)N3—C10—C11—C12179.7 (5)
C9—N2—C2—C1−0.3 (7)C15—C10—C11—C120.8 (7)
C2—N1—C3—C4180.0 (5)C10—C11—C12—C130.3 (8)
Hg1—N1—C3—C4−8.4 (7)C11—C12—C13—C14−1.0 (8)
C2—N1—C3—C80.2 (5)C12—C13—C14—C150.4 (8)
Hg1—N1—C3—C8171.9 (3)N4—N5—C15—C14−179.2 (5)
C8—C3—C4—C5−0.8 (7)N4—N5—C15—C100.1 (6)
N1—C3—C4—C5179.5 (4)C13—C14—C15—N5−180.0 (5)
C3—C4—C5—C61.2 (7)C13—C14—C15—C100.8 (8)
C4—C5—C6—C7−1.1 (8)N3—C10—C15—N50.0 (5)
C5—C6—C7—C80.5 (7)C11—C10—C15—N5179.2 (4)
C6—C7—C8—N2−179.7 (5)N3—C10—C15—C14179.4 (4)
C6—C7—C8—C30.0 (7)C11—C10—C15—C14−1.4 (8)
C2—N2—C8—C7−180.0 (5)

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2600).

References

  • Fan, J., Zhu, H. F., Okamura, T., Sun, W. Y., Tang, W. X. & Ueyama, N. (2003). Inorg. Chem.42, 158–162. [PubMed]
  • Hoskins, B. F., Robson, R. & Slizys, D. A. (1997). Angew. Chem.109, 2430–2432.
  • Makoto, F., Masahide, T., Akiko, H. & Bruno, T. (2005). Acc. Chem. Res.38, 371–380.
  • Rigaku/MSC (2006). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography