PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m706.
Published online 2009 June 6. doi:  10.1107/S1600536809019990
PMCID: PMC2969410

Bis[2-(2-pyridylmethyl­amino)ethane­sulfonato-κ3 N,N′,O]zinc(II)

Abstract

The title mononuclear complex, [Zn(C8H11N2O3S)2], is a zinc salt of 2-(2-pyridylmethyl­amino)ethane­sulfonic acid (Hpmt). The ZnII ion is located on an inversion centre and is octahedrally surrounded by four N and two O atoms. The deprotonated pmt anion coordinates in a facial arrangement through its two N atoms and one of the sulfonate O atoms. The crystal packing is determined by inter­molecular N—H(...)O and C—H(...)O hydrogen bonds.

Related literature

For the structures of the Co(II) and Ni(II) analogues, see: Li et al. (2008 [triangle]); Liao et al. (2007 [triangle]). For the preparation of the Hpmt ligand, see: Li et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m706-scheme1.jpg

Experimental

Crystal data

  • [Zn(C8H11N2O3S)2]
  • M r = 495.87
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m706-efi1.jpg
  • a = 9.6288 (13) Å
  • b = 10.0047 (13) Å
  • c = 11.3624 (15) Å
  • β = 105.965 (1)°
  • V = 1052.4 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.41 mm−1
  • T = 291 K
  • 0.50 × 0.39 × 0.29 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.540, T max = 0.689
  • 6318 measured reflections
  • 2419 independent reflections
  • 2221 reflections with I > 2σ(I)
  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.062
  • S = 1.07
  • 2419 reflections
  • 137 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019990/at2794sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019990/at2794Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (No. 20771054).

supplementary crystallographic information

Comment

The complex (I) is isostructural with its analogues [Co(C8H11N2O3S)2] (Li et al., 2006), [Ni(C8H11N2O3S)2] (Liao et al., 2007) and [Cu(C8H11N2O3S)2].2H2O (Li et al., 2008), whose structures have been described in detail. The six-coordinate ZnII ion locates on a centre of symmetry with two deprotonated pmt- anions coordinate in a tridentate facial arrangement with its three donor atoms (Fig.1). The bond lengths and angles of (I) are in good agreement with its Co(II) and Ni(II) analogues (Table 1).

The N—H donor and S═O acceptor groups of the pmt ions are involved in hydrogen bonding interactions and forms a two-dimensional network in the bc plane (Table 2 and Fig. 2).

Experimental

The ligand Hpmt was prepared according to the method of Li et al., 2006. To the solution of Hpmt (2.0 mmol, 0.43 g) in water (25 ml), solid ZnCl2 (1 mmol, 0.14 g) was added. The resulting mixture was stirred at 333 K for 5 h, then cooled to room temperature. After filtration, the filtrate was left to stand at room temperature for slow evaporation. Colourless block-shaped crystals suitable for X-ray diffraction were obtained in a yield of 42%. Analysis, found: C 38.66, H 4.37, N 11.32, S 12.95%; C16H22N4O6S2Zn requires: C 38.72, H 4.44, N 11.29, S 12.90%. IR (KBr, ν, cm-1): 771.3 [γ(C=C—H)], 746.5(γCH2); 1190.3, 1151.4, 1038.8(ν SO3-); 1607.2, 1572.3(ν C=C + ν C=N); 3198.2(ν N—H).

Refinement

H atoms bonded to C were positioned geometrically with C—H distance of 0.93–0.97 Å, and treated as riding atoms, with Uiso(H) =1.2Ueq(C). The N—H hydrogen atom was located in a difference Fourier map and refined isotropically.

Figures

Fig. 1.
Molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Atoms with the suffix A are at the symmetry position (-x, -y, -z).
Fig. 2.
The hydrogen bonding interactions in (I) (dashed lines) projected in bc plane. H atoms on C atoms have been omitted.

Crystal data

[Zn(C8H11N2O3S)2]F(000) = 512
Mr = 495.87Dx = 1.565 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4168 reflections
a = 9.6288 (13) Åθ = 2.8–28.2°
b = 10.0047 (13) ŵ = 1.41 mm1
c = 11.3624 (15) ÅT = 291 K
β = 105.965 (1)°Block, colourless
V = 1052.4 (2) Å30.50 × 0.39 × 0.29 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer2419 independent reflections
Radiation source: fine-focus sealed tube2221 reflections with I > 2σ(I)
graphiteRint = 0.012
[var phi] and ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→12
Tmin = 0.540, Tmax = 0.689k = −9→12
6318 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0322P)2 + 0.3355P] where P = (Fo2 + 2Fc2)/3
2419 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.50000.00000.50000.02437 (8)
S10.63235 (4)0.29294 (4)0.45567 (3)0.02858 (10)
O10.57188 (13)0.16226 (11)0.40792 (10)0.0375 (3)
O20.55332 (14)0.40018 (12)0.37950 (10)0.0428 (3)
O30.78676 (14)0.30037 (16)0.47547 (13)0.0573 (4)
N10.27433 (14)0.03618 (13)0.39160 (12)0.0309 (3)
N20.42452 (13)0.13247 (12)0.61609 (11)0.0274 (3)
C10.2143 (2)0.02195 (18)0.27020 (16)0.0412 (4)
H10.2677−0.01850.22320.049*
C20.0760 (2)0.0655 (3)0.2137 (2)0.0633 (6)
H20.03700.05490.12970.076*
C3−0.0031 (2)0.1249 (3)0.2834 (2)0.0746 (7)
H3−0.09610.15580.24680.090*
C40.05670 (19)0.1385 (2)0.4085 (2)0.0584 (5)
H40.00440.17750.45710.070*
C50.19633 (16)0.09248 (16)0.45981 (15)0.0350 (3)
C60.26892 (17)0.10136 (17)0.59524 (15)0.0360 (3)
H6A0.22330.17070.63130.043*
H6B0.25840.01710.63420.043*
C70.44409 (17)0.27835 (15)0.59923 (13)0.0303 (3)
H7A0.41840.32730.66390.036*
H7B0.37960.30660.52170.036*
C80.59850 (16)0.31189 (15)0.60131 (13)0.0292 (3)
H8A0.66370.25420.65990.035*
H8B0.61900.40340.62870.035*
H1N0.4634 (18)0.1133 (17)0.6913 (16)0.032 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.02484 (13)0.02218 (13)0.02641 (12)0.00349 (8)0.00760 (9)−0.00102 (8)
S10.03239 (19)0.02599 (19)0.02848 (17)0.00050 (14)0.01027 (14)0.00143 (13)
O10.0591 (7)0.0267 (6)0.0308 (5)−0.0037 (5)0.0194 (5)−0.0023 (4)
O20.0672 (8)0.0301 (6)0.0319 (5)0.0094 (5)0.0148 (5)0.0068 (5)
O30.0353 (7)0.0786 (11)0.0625 (8)−0.0049 (6)0.0208 (6)−0.0068 (7)
N10.0272 (6)0.0305 (6)0.0330 (6)0.0024 (5)0.0051 (5)0.0010 (5)
N20.0307 (6)0.0268 (6)0.0253 (6)0.0022 (5)0.0087 (5)0.0003 (5)
C10.0404 (9)0.0424 (10)0.0366 (8)−0.0027 (7)0.0035 (7)0.0020 (7)
C20.0453 (11)0.0799 (16)0.0501 (11)−0.0037 (11)−0.0114 (9)0.0067 (11)
C30.0310 (10)0.097 (2)0.0817 (16)0.0137 (11)−0.0080 (10)0.0102 (15)
C40.0270 (8)0.0691 (14)0.0786 (14)0.0112 (9)0.0137 (9)0.0001 (11)
C50.0259 (7)0.0329 (8)0.0474 (9)0.0013 (6)0.0118 (6)0.0005 (7)
C60.0327 (8)0.0387 (9)0.0430 (8)0.0013 (7)0.0210 (7)−0.0030 (7)
C70.0367 (8)0.0245 (7)0.0313 (7)0.0042 (6)0.0120 (6)−0.0028 (6)
C80.0348 (7)0.0268 (7)0.0241 (6)−0.0009 (6)0.0048 (5)−0.0029 (5)

Geometric parameters (Å, °)

Zn1—N22.1336 (12)C1—H10.9300
Zn1—N2i2.1336 (12)C2—C31.376 (4)
Zn1—O12.1465 (11)C2—H20.9300
Zn1—O1i2.1465 (11)C3—C41.386 (3)
Zn1—N1i2.2130 (13)C3—H30.9300
Zn1—N12.2130 (13)C4—C51.388 (2)
S1—O31.4431 (13)C4—H40.9300
S1—O21.4549 (12)C5—C61.508 (2)
S1—O11.4727 (11)C6—H6A0.9700
S1—C81.7825 (15)C6—H6B0.9700
N1—C51.342 (2)C7—C81.518 (2)
N1—C11.349 (2)C7—H7A0.9700
N2—C61.4841 (19)C7—H7B0.9700
N2—C71.4908 (19)C8—H8A0.9700
N2—H1N0.856 (17)C8—H8B0.9700
C1—C21.380 (3)
N2—Zn1—N2i180.0N1—C1—H1119.0
N2—Zn1—O192.40 (5)C2—C1—H1119.0
N2i—Zn1—O187.60 (4)C3—C2—C1118.96 (19)
N2—Zn1—O1i87.60 (5)C3—C2—H2120.5
N2i—Zn1—O1i92.40 (5)C1—C2—H2120.5
O1—Zn1—O1i180.0C2—C3—C4119.55 (18)
N2—Zn1—N1i101.93 (5)C2—C3—H3120.2
N2i—Zn1—N1i78.06 (5)C4—C3—H3120.2
O1—Zn1—N1i89.78 (5)C3—C4—C5118.7 (2)
O1i—Zn1—N1i90.22 (5)C3—C4—H4120.7
N2—Zn1—N178.06 (5)C5—C4—H4120.7
N2i—Zn1—N1101.94 (5)N1—C5—C4121.82 (16)
O1—Zn1—N190.22 (5)N1—C5—C6115.98 (13)
O1i—Zn1—N189.78 (5)C4—C5—C6122.19 (16)
N1i—Zn1—N1180.0N2—C6—C5109.85 (12)
O3—S1—O2113.74 (9)N2—C6—H6A109.7
O3—S1—O1112.90 (8)C5—C6—H6A109.7
O2—S1—O1110.27 (7)N2—C6—H6B109.7
O3—S1—C8107.06 (8)C5—C6—H6B109.7
O2—S1—C8105.93 (7)H6A—C6—H6B108.2
O1—S1—C8106.36 (7)N2—C7—C8111.86 (12)
S1—O1—Zn1129.76 (6)N2—C7—H7A109.2
C5—N1—C1118.96 (14)C8—C7—H7A109.2
C5—N1—Zn1111.53 (10)N2—C7—H7B109.2
C1—N1—Zn1129.14 (12)C8—C7—H7B109.2
C6—N2—C7110.03 (12)H7A—C7—H7B107.9
C6—N2—Zn1105.77 (9)C7—C8—S1112.98 (10)
C7—N2—Zn1116.88 (9)C7—C8—H8A109.0
C6—N2—H1N104.9 (12)S1—C8—H8A109.0
C7—N2—H1N108.2 (12)C7—C8—H8B109.0
Zn1—N2—H1N110.4 (11)S1—C8—H8B109.0
N1—C1—C2122.03 (19)H8A—C8—H8B107.8
O3—S1—O1—Zn1103.94 (10)N1—Zn1—N2—C7−90.09 (10)
O2—S1—O1—Zn1−127.61 (9)C5—N1—C1—C21.1 (3)
C8—S1—O1—Zn1−13.19 (11)Zn1—N1—C1—C2−171.19 (16)
N2—Zn1—O1—S133.74 (10)N1—C1—C2—C3−0.2 (3)
N2i—Zn1—O1—S1−146.26 (10)C1—C2—C3—C4−0.7 (4)
N1i—Zn1—O1—S1−68.19 (10)C2—C3—C4—C50.7 (4)
N1—Zn1—O1—S1111.81 (10)C1—N1—C5—C4−1.1 (3)
N2—Zn1—N1—C5−14.41 (11)Zn1—N1—C5—C4172.45 (15)
N2i—Zn1—N1—C5165.59 (11)C1—N1—C5—C6178.25 (15)
O1—Zn1—N1—C5−106.82 (11)Zn1—N1—C5—C6−8.16 (17)
O1i—Zn1—N1—C573.18 (11)C3—C4—C5—N10.3 (3)
N2—Zn1—N1—C1158.35 (15)C3—C4—C5—C6−179.1 (2)
N2i—Zn1—N1—C1−21.65 (15)C7—N2—C6—C580.21 (15)
O1—Zn1—N1—C165.94 (14)Zn1—N2—C6—C5−46.87 (14)
O1i—Zn1—N1—C1−114.06 (14)N1—C5—C6—N237.7 (2)
O1—Zn1—N2—C6122.46 (10)C4—C5—C6—N2−142.93 (17)
O1i—Zn1—N2—C6−57.54 (10)C6—N2—C7—C8−171.67 (11)
N1i—Zn1—N2—C6−147.26 (9)Zn1—N2—C7—C8−51.08 (14)
N1—Zn1—N2—C632.74 (9)N2—C7—C8—S185.42 (13)
O1—Zn1—N2—C7−0.37 (10)O3—S1—C8—C7−168.32 (11)
O1i—Zn1—N2—C7179.63 (10)O2—S1—C8—C769.97 (12)
N1i—Zn1—N2—C789.91 (10)O1—S1—C8—C7−47.37 (12)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N···O2ii0.855 (18)2.079 (18)2.9259 (17)170.6 (16)
C1—H1···O2iii0.932.473.388 (2)169
C4—H4···O3iv0.932.493.324 (2)150
C6—H6B···O1i0.972.563.056 (2)112
C8—H8B···O2v0.972.563.265 (2)130

Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x−1, y, z; (i) −x+1, −y, −z+1; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2794).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984–m2986.
  • Li, J.-X., Jiang, Y.-M. & Lian, B.-R. (2008). J. Chem. Crystallogr.38, 711–715.
  • Liao, B.-L., Li, J.-X. & Jiang, Y.-M. (2007). Acta Cryst. E63, m1974.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography