PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m779.
Published online 2009 June 17. doi:  10.1107/S1600536809022028
PMCID: PMC2969396

Bis(6-meth­oxy-2-{[tris­(hydroxy­meth­yl)methyl-κO]imino­meth­yl}phenolato-κ2 N,O 1)nickel(II) dihydrate

Abstract

In the title compound, [Ni(C12H16NO5)2]·2H2O, the NiII atom is coordinated by four O atoms and two N atoms from the two 6-meth­oxy-2-{[tris­(hydroxy­meth­yl)meth­yl]imino­meth­yl}phenolate ligands in a distorted octa­hedral coordination geometry. O—H(...)O hydrogen bonds link the complexes and uncoordinated water mol­ecules into two-dimensional networks parallel to (001).

Related literature

For the applications of Schiff-base complexes, see: Kritagawa & Kondo (1998 [triangle]); Zhang et al. (1998 [triangle]); Yaghi et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m779-scheme1.jpg

Experimental

Crystal data

  • [Ni(C12H16NO5)2]·2H2O
  • M r = 603.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m779-efi1.jpg
  • a = 12.0142 (10) Å
  • b = 10.9876 (10) Å
  • c = 20.324 (2) Å
  • β = 97.501 (1)°
  • V = 2660.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.80 mm−1
  • T = 293 K
  • 0.44 × 0.29 × 0.20 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.721, T max = 0.857
  • 13321 measured reflections
  • 4933 independent reflections
  • 4436 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.117
  • S = 1.00
  • 4933 reflections
  • 376 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022028/bi2378sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022028/bi2378Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Science Foundation of Maoming University (grant No. 208033).

supplementary crystallographic information

Comment

Polymeric metal complexes containing Schiff-base ligands are of interest because of their useful chemical or physical properties (Zhang et al., 1998; Kritagawa & Kondo, 1998; Yaghi et al., 1996). Herein, we report a new crystal structure containing the Schiff-base ligand 6-methoxy-2-{[tris(hydroxymethyl)methyl]iminomethyl}phenol (denoted HL).

As shown in Figure 1, the asymmetric unit of the complex comprises two L- ligands, one NiII atom and two lattice water molecules. The NiII atom is hexa-coordinated by four O atoms and two N atoms from the two L- ligands, giving a distorted octahedral coordination geometry. The Ni—O and Ni—N bond distances are within normal ranges. The [NiL2] complexes form an extensive network of O—H···O interactions involving the lattice water molecules, giving 2-D networks parallel to the (001) planes (Fig. 2).

Experimental

The complex was synthesized by refluxing HL (0.050 g, 0.2 mmol) and NiCl2.6H2O (0.048 g, 0.2 mmol) in the mixed solution (CH3OH:H2O = 4:1) until all solid was dissolved. The solution was then cooled to room temperature and filtered. Green crystals for X-ray diffraction analysis were obtained by slow evaporation of the filtrate. Elemental analysis calculated: C 47.74, H 5.97, N 4.64 %; found: C 47.69, H 5.51, N 4.58 %.

Refinement

All H atoms bound to C were placed geometrically with C—H = 0.93 (aromatic H), 0.96 (methyl H) or 0.97 Å (methylene H) and refined as riding with Uiso(H) = 1.2Ueq(C) (aromatic and methylene H) or 1.5Ueq(C) (methyl H). The H atoms of the water molecule were located from difference density maps and refined with distance restraints of d(H···H) = 1.38 (2) Å, d(O—H) = 0.82 (1) Å. The H atoms of the hydroxyl groups were placed geometrically with O—H = 0.82 Å.

Figures

Fig. 1.
Molecular structure with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
Fig. 2.
Packing diagram viewed approximately along the c axis, showing the complex network of O—H···O hydrogen bonds (dashed lines).

Crystal data

[Ni(C12H16NO5)2]·2H2OF(000) = 1272
Mr = 603.26Dx = 1.506 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4933 reflections
a = 12.0142 (10) Åθ = 2.0–25.5°
b = 10.9876 (10) ŵ = 0.80 mm1
c = 20.324 (2) ÅT = 293 K
β = 97.501 (1)°Block, green
V = 2660.0 (4) Å30.44 × 0.29 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer4933 independent reflections
Radiation source: fine-focus sealed tube4436 reflections with I > 2σ(I)
graphiteRint = 0.043
[var phi] and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −14→11
Tmin = 0.721, Tmax = 0.857k = −13→13
13321 measured reflectionsl = −24→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.069P)2 + 2.387P] where P = (Fo2 + 2Fc2)/3
4933 reflections(Δ/σ)max = 0.032
376 parametersΔρmax = 0.38 e Å3
8 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9480 (2)0.2452 (2)0.86933 (11)0.0233 (5)
C21.0283 (2)0.2677 (3)0.92480 (12)0.0311 (6)
H21.10230.24330.92420.037*
C30.9989 (3)0.3243 (3)0.97874 (13)0.0386 (7)
H31.05240.33901.01530.046*
C40.8871 (3)0.3610 (3)0.97952 (14)0.0391 (7)
H40.86710.40031.01680.047*
C50.8073 (2)0.3402 (2)0.92655 (13)0.0307 (6)
C60.8335 (2)0.2797 (2)0.86879 (11)0.0228 (5)
C70.6684 (2)0.3019 (2)0.62935 (12)0.0231 (5)
C80.6897 (3)0.3685 (2)0.57276 (13)0.0325 (6)
C90.6097 (3)0.3783 (3)0.51866 (15)0.0468 (8)
H90.62510.42380.48230.056*
C100.5051 (3)0.3210 (3)0.51678 (16)0.0515 (9)
H100.45090.33070.48010.062*
C110.4834 (3)0.2522 (3)0.56833 (15)0.0404 (7)
H110.41430.21360.56680.048*
C120.5639 (2)0.2379 (2)0.62428 (12)0.0269 (5)
C130.8357 (4)0.4634 (4)0.52069 (18)0.0638 (11)
H13A0.83000.39930.48830.096*
H13B0.91280.48720.53120.096*
H13C0.79210.53190.50300.096*
C140.5356 (2)0.1521 (2)0.67266 (13)0.0265 (5)
H140.46210.12380.66790.032*
C150.5631 (2)0.0166 (2)0.76457 (13)0.0264 (5)
C160.6607 (2)−0.0731 (2)0.77949 (14)0.0312 (6)
H16A0.6454−0.12910.81410.037*
H16B0.6694−0.11990.74000.037*
C170.4562 (2)−0.0513 (3)0.73736 (15)0.0344 (6)
H17A0.4381−0.11040.76980.041*
H17B0.39430.00590.72960.041*
C180.5411 (3)0.0770 (3)0.82811 (14)0.0370 (6)
H18A0.52260.01560.85920.044*
H18B0.60830.11900.84780.044*
C190.6632 (3)0.4399 (3)0.97696 (15)0.0488 (8)
H19A0.67550.39081.01630.073*
H19B0.58500.46030.96780.073*
H19C0.70680.51310.98350.073*
C200.9938 (2)0.1930 (2)0.81394 (12)0.0228 (5)
H201.07120.18230.81820.027*
C210.9989 (2)0.1161 (2)0.70684 (12)0.0229 (5)
C220.9245 (2)0.0216 (2)0.66780 (12)0.0260 (5)
H22A0.95020.00800.62510.031*
H22B0.9290−0.05490.69180.031*
C231.0163 (2)0.2240 (2)0.66147 (12)0.0276 (5)
H23A1.06220.19770.62820.033*
H23B0.94410.24900.63860.033*
C241.1143 (2)0.0572 (2)0.72948 (13)0.0282 (5)
H24A1.14280.01930.69190.034*
H24B1.16750.11890.74750.034*
N10.93758 (17)0.16035 (17)0.75960 (9)0.0199 (4)
N20.60221 (17)0.11097 (18)0.72161 (10)0.0228 (4)
Ni10.76754 (2)0.15968 (3)0.742167 (14)0.01963 (12)
O10.4508 (2)0.1618 (2)0.81592 (14)0.0531 (6)
H10.47590.23130.81780.080*
O20.46970 (17)−0.11101 (19)0.67775 (11)0.0418 (5)
H2A0.4079−0.12550.65710.063*
O30.74281 (14)0.30277 (15)0.68125 (8)0.0233 (4)
O40.81045 (15)0.06375 (17)0.65815 (9)0.0301 (4)
O51.06823 (16)0.32512 (17)0.69579 (10)0.0341 (4)
H51.02000.37340.70420.051*
O61.10157 (16)−0.03050 (19)0.77806 (11)0.0399 (5)
H61.1596−0.07020.78590.060*
O70.2701 (2)0.1557 (2)0.87725 (16)0.0584 (7)
O80.6646 (2)0.8964 (2)0.60240 (12)0.0524 (6)
O90.79479 (19)0.4219 (2)0.57859 (10)0.0440 (5)
O100.76155 (15)−0.00657 (17)0.80057 (10)0.0311 (4)
O110.69602 (18)0.3743 (2)0.92284 (10)0.0446 (5)
O120.75320 (14)0.26451 (16)0.82089 (8)0.0258 (4)
H10A0.815 (2)−0.054 (3)0.803 (2)0.080*
H1AA0.690 (3)0.8269 (14)0.603 (2)0.080*
H2AA0.329 (2)0.151 (3)0.862 (2)0.080*
H4AA0.768 (3)0.008 (3)0.645 (2)0.080*
H1BB0.605 (2)0.902 (3)0.618 (2)0.080*
H2BB0.243 (3)0.0900 (16)0.886 (2)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0281 (12)0.0218 (12)0.0198 (11)−0.0011 (10)0.0026 (9)−0.0003 (9)
C20.0308 (13)0.0363 (15)0.0247 (13)0.0002 (12)−0.0020 (10)0.0005 (11)
C30.0432 (17)0.0480 (18)0.0220 (13)−0.0017 (14)−0.0059 (12)−0.0053 (12)
C40.0487 (18)0.0460 (17)0.0222 (13)0.0024 (14)0.0036 (12)−0.0104 (12)
C50.0367 (15)0.0310 (14)0.0247 (13)0.0056 (11)0.0052 (11)−0.0026 (10)
C60.0300 (13)0.0203 (11)0.0177 (11)−0.0016 (10)0.0022 (9)0.0016 (9)
C70.0293 (13)0.0164 (11)0.0232 (12)0.0003 (10)0.0022 (10)−0.0012 (9)
C80.0461 (16)0.0242 (13)0.0265 (13)−0.0038 (12)0.0026 (11)0.0015 (10)
C90.073 (2)0.0381 (16)0.0257 (14)−0.0042 (16)−0.0061 (14)0.0096 (12)
C100.065 (2)0.0432 (18)0.0374 (17)−0.0052 (16)−0.0254 (16)0.0094 (14)
C110.0407 (16)0.0311 (15)0.0442 (17)−0.0031 (12)−0.0144 (13)0.0020 (12)
C120.0294 (13)0.0217 (12)0.0276 (12)0.0018 (10)−0.0035 (10)−0.0005 (10)
C130.094 (3)0.053 (2)0.052 (2)−0.018 (2)0.040 (2)−0.0003 (17)
C140.0231 (12)0.0206 (12)0.0346 (14)−0.0017 (10)−0.0015 (10)−0.0026 (10)
C150.0262 (12)0.0206 (12)0.0333 (13)−0.0046 (10)0.0068 (10)0.0036 (10)
C160.0318 (14)0.0220 (13)0.0391 (14)−0.0031 (11)0.0022 (11)0.0055 (11)
C170.0268 (13)0.0267 (14)0.0494 (17)−0.0059 (11)0.0037 (12)0.0054 (12)
C180.0429 (16)0.0336 (15)0.0375 (15)−0.0038 (13)0.0170 (12)0.0044 (12)
C190.056 (2)0.057 (2)0.0362 (16)0.0188 (16)0.0167 (14)−0.0120 (15)
C200.0223 (12)0.0202 (11)0.0253 (12)−0.0011 (10)0.0011 (9)0.0006 (9)
C210.0248 (12)0.0220 (12)0.0225 (11)0.0003 (10)0.0056 (9)−0.0032 (9)
C220.0307 (13)0.0203 (12)0.0265 (12)0.0007 (10)0.0022 (10)−0.0055 (10)
C230.0331 (13)0.0269 (13)0.0239 (12)−0.0017 (11)0.0080 (10)−0.0004 (10)
C240.0267 (13)0.0261 (13)0.0322 (13)0.0031 (10)0.0054 (10)−0.0007 (10)
N10.0236 (10)0.0174 (10)0.0190 (10)0.0009 (8)0.0044 (8)0.0006 (7)
N20.0221 (10)0.0186 (10)0.0276 (11)−0.0009 (8)0.0028 (8)−0.0005 (8)
Ni10.02003 (18)0.01864 (18)0.01981 (18)−0.00071 (11)0.00109 (12)−0.00067 (11)
O10.0484 (14)0.0359 (12)0.0817 (18)0.0007 (10)0.0338 (13)−0.0071 (12)
O20.0364 (11)0.0328 (11)0.0528 (13)−0.0080 (9)−0.0074 (9)−0.0070 (10)
O30.0269 (9)0.0198 (8)0.0223 (8)−0.0042 (7)−0.0004 (7)0.0010 (7)
O40.0286 (9)0.0285 (10)0.0319 (10)−0.0018 (8)−0.0014 (7)−0.0101 (8)
O50.0351 (11)0.0263 (10)0.0421 (11)−0.0068 (8)0.0096 (9)−0.0016 (8)
O60.0309 (10)0.0326 (11)0.0560 (13)0.0111 (9)0.0046 (9)0.0139 (9)
O70.0449 (14)0.0510 (15)0.0836 (19)0.0014 (11)0.0248 (13)−0.0003 (13)
O80.0615 (16)0.0469 (14)0.0485 (13)−0.0191 (12)0.0057 (11)−0.0043 (11)
O90.0523 (13)0.0463 (12)0.0351 (11)−0.0156 (10)0.0125 (9)0.0085 (9)
O100.0281 (9)0.0250 (9)0.0390 (10)0.0007 (8)−0.0004 (8)0.0041 (8)
O110.0417 (12)0.0646 (14)0.0275 (10)0.0182 (11)0.0046 (9)−0.0162 (10)
O120.0246 (9)0.0298 (9)0.0222 (8)0.0023 (7)0.0008 (7)−0.0059 (7)

Geometric parameters (Å, °)

C1—C21.406 (3)C17—H17B0.970
C1—C61.426 (4)C18—O11.427 (4)
C1—C201.435 (3)C18—H18A0.970
C2—C31.347 (4)C18—H18B0.970
C2—H20.930C19—O111.414 (3)
C3—C41.405 (5)C19—H19A0.960
C3—H30.930C19—H19B0.960
C4—C51.364 (4)C19—H19C0.960
C4—H40.930C20—N11.269 (3)
C5—O111.381 (3)C20—H200.930
C5—C61.419 (3)C21—N11.461 (3)
C6—O121.289 (3)C21—C221.524 (3)
C7—O31.290 (3)C21—C231.533 (3)
C7—C81.414 (4)C21—C241.545 (3)
C7—C121.431 (4)C22—O41.435 (3)
C8—C91.366 (4)C22—H22A0.970
C8—O91.384 (4)C22—H22B0.970
C9—C101.402 (5)C23—O51.413 (3)
C9—H90.930C23—H23A0.970
C10—C111.345 (5)C23—H23B0.970
C10—H100.930C24—O61.402 (3)
C11—C121.402 (4)C24—H24A0.970
C11—H110.930C24—H24B0.970
C12—C141.435 (4)N1—Ni12.027 (2)
C13—O91.409 (4)N2—Ni12.047 (2)
C13—H13A0.960Ni1—O121.9971 (17)
C13—H13B0.960Ni1—O31.9993 (17)
C13—H13C0.960Ni1—O42.1266 (18)
C14—N21.275 (3)Ni1—O102.1847 (19)
C14—H140.930O1—H10.820
C15—N21.471 (3)O2—H2A0.820
C15—C181.506 (4)O4—H4AA0.82 (3)
C15—C171.526 (3)O5—H50.820
C15—C161.531 (4)O6—H60.820
C16—O101.432 (3)O7—H2AA0.81 (3)
C16—H16A0.970O7—H2BB0.82 (2)
C16—H16B0.970O8—H1AA0.82 (2)
C17—O21.406 (4)O8—H1BB0.82 (3)
C17—H17A0.970O10—H10A0.82 (3)
C2—C1—C6121.3 (2)O11—C19—H19B109.5
C2—C1—C20114.0 (2)H19A—C19—H19B109.5
C6—C1—C20124.6 (2)O11—C19—H19C109.5
C3—C2—C1120.6 (3)H19A—C19—H19C109.5
C3—C2—H2119.7H19B—C19—H19C109.5
C1—C2—H2119.7N1—C20—C1125.5 (2)
C2—C3—C4119.6 (3)N1—C20—H20117.2
C2—C3—H3120.2C1—C20—H20117.2
C4—C3—H3120.2N1—C21—C22106.9 (2)
C5—C4—C3121.2 (3)N1—C21—C23107.81 (19)
C5—C4—H4119.4C22—C21—C23109.3 (2)
C3—C4—H4119.4N1—C21—C24116.1 (2)
C4—C5—O11125.0 (2)C22—C21—C24108.2 (2)
C4—C5—C6121.5 (3)C23—C21—C24108.4 (2)
O11—C5—C6113.5 (2)O4—C22—C21109.65 (19)
O12—C6—C5117.4 (2)O4—C22—H22A109.7
O12—C6—C1126.7 (2)C21—C22—H22A109.7
C5—C6—C1115.9 (2)O4—C22—H22B109.7
O3—C7—C8118.8 (2)C21—C22—H22B109.7
O3—C7—C12124.8 (2)H22A—C22—H22B108.2
C8—C7—C12116.4 (2)O5—C23—C21113.4 (2)
C9—C8—O9125.0 (3)O5—C23—H23A108.9
C9—C8—C7120.8 (3)C21—C23—H23A108.9
O9—C8—C7114.2 (2)O5—C23—H23B108.9
C8—C9—C10121.3 (3)C21—C23—H23B108.9
C8—C9—H9119.3H23A—C23—H23B107.7
C10—C9—H9119.3O6—C24—C21108.7 (2)
C11—C10—C9119.7 (3)O6—C24—H24A109.9
C11—C10—H10120.2C21—C24—H24A109.9
C9—C10—H10120.2O6—C24—H24B109.9
C10—C11—C12120.8 (3)C21—C24—H24B109.9
C10—C11—H11119.6H24A—C24—H24B108.3
C12—C11—H11119.6C20—N1—C21118.1 (2)
C11—C12—C7120.6 (2)C20—N1—Ni1124.24 (17)
C11—C12—C14115.5 (2)C21—N1—Ni1117.62 (15)
C7—C12—C14123.9 (2)C14—N2—C15119.8 (2)
O9—C13—H13A109.5C14—N2—Ni1124.04 (18)
O9—C13—H13B109.5C15—N2—Ni1116.08 (15)
H13A—C13—H13B109.5O12—Ni1—O391.21 (7)
O9—C13—H13C109.5O12—Ni1—N192.77 (7)
H13A—C13—H13C109.5O3—Ni1—N199.80 (7)
H13B—C13—H13C109.5O12—Ni1—N297.55 (8)
N2—C14—C12126.0 (2)O3—Ni1—N291.00 (7)
N2—C14—H14117.0N1—Ni1—N2164.91 (8)
C12—C14—H14117.0O12—Ni1—O4169.89 (7)
N2—C15—C18107.7 (2)O3—Ni1—O485.67 (7)
N2—C15—C17116.6 (2)N1—Ni1—O478.33 (7)
C18—C15—C17107.0 (2)N2—Ni1—O492.12 (8)
N2—C15—C16106.0 (2)O12—Ni1—O1091.98 (7)
C18—C15—C16109.2 (2)O3—Ni1—O10168.87 (7)
C17—C15—C16110.1 (2)N1—Ni1—O1090.69 (7)
O10—C16—C15109.1 (2)N2—Ni1—O1078.01 (7)
O10—C16—H16A109.9O4—Ni1—O1092.89 (7)
C15—C16—H16A109.9C18—O1—H1109.5
O10—C16—H16B109.9C17—O2—H2A109.5
C15—C16—H16B109.9C7—O3—Ni1122.09 (15)
H16A—C16—H16B108.3C22—O4—Ni1112.16 (13)
O2—C17—C15110.7 (2)C22—O4—H4AA110 (3)
O2—C17—H17A109.5Ni1—O4—H4AA115 (3)
C15—C17—H17A109.5C23—O5—H5109.5
O2—C17—H17B109.5C24—O6—H6109.5
C15—C17—H17B109.5H2AA—O7—H2BB115 (3)
H17A—C17—H17B108.1H1AA—O8—H1BB114 (3)
O1—C18—C15110.7 (2)C8—O9—C13118.7 (3)
O1—C18—H18A109.5C16—O10—Ni1110.53 (14)
C15—C18—H18A109.5C16—O10—H10A109 (3)
O1—C18—H18B109.5Ni1—O10—H10A118 (3)
C15—C18—H18B109.5C5—O11—C19117.5 (2)
H18A—C18—H18B108.1C6—O12—Ni1123.07 (16)
O11—C19—H19A109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.852.670 (3)179
O2—H2A···O11ii0.821.912.666 (3)152
O2—H2A···O12ii0.822.373.010 (3)135
O5—H5···O6iii0.821.872.691 (3)174
O6—H6···O3iv0.821.892.671 (2)159
O10—H10A···O5iv0.82 (3)1.93 (3)2.751 (3)175 (5)
O8—H1AA···O7i0.82 (2)1.97 (1)2.775 (4)166 (4)
O4—H4AA···O8v0.82 (3)1.88 (4)2.686 (3)170 (4)
O8—H1BB···O2vi0.82 (3)2.16 (3)2.962 (3)167 (4)
O7—H2BB···O9ii0.82 (2)2.06 (1)2.862 (4)168 (4)
O7—H2AA···O10.81 (3)1.84 (3)2.641 (3)169 (4)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+2, y+1/2, −z+3/2; (iv) −x+2, y−1/2, −z+3/2; (v) x, y−1, z; (vi) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2378).

References

  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kritagawa, S. & Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739–1753.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yaghi, O. M., Li, H. & Groy, T. L. (1996). J. Am. Chem. Soc., 118, 9096–9101.
  • Zhang, Y., Jianmin, L., Min, Z., Wang, Q. & Wu, X. (1998). Chem. Lett., 27, 1051–1052.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography