PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1515–o1516.
Published online 2009 June 6. doi:  10.1107/S1600536809021035
PMCID: PMC2969395

Ethyl 4-hydr­oxy-9-tosyl-9H-carbazole-3-carboxyl­ate

Abstract

In the title compound, C22H19NO5S, the carbazole skeleton is nearly planar [maximum deviation = 0.043 (1) Å] with the pyrrole ring oriented at dihedral angles of 2.32 (6) and 1.77 (6)° with respect to the adjacent benzene rings. The dihedral angle between the benzene ring of the tosyl group and the carbazole skeleton is 82.25 (5)°. Intra­molecular O—H(...)O hydrogen bonding results in the formation of a planar six-membered ring, which is oriented at a dihedral angle of 3.06 (4)° with respect to the adjacent carbazole skeleton. In the crystal structure, weak inter­molecular C—H(...)O inter­actions link the mol­ecules into infinite chains and π–π contacts between the benzene rings and between the pyrrole and benzene rings [centroid–centroid distances = 3.374 (1) and 3.730 (1) Å, respectively] may further stabilize the structure. A weak C—H(...)π inter­action is also present.

Related literature

For the use of tetra­hydro­carbazolone derivatives in the synthesis of Ondansetron, an anti­emetic drug inhibiting the serotonin 5-HT3 receptor, see: Coates et al. (1987 [triangle]); Gutman & Cyjon (2006 [triangle]); Molnar et al. (2006 [triangle]). Tetra­hydro­carbazolone ester derivatives can also be considered to be synthetic precursors of tetra­cyclic aspidosperma alkaloids, see: Ergün (2007 [triangle]); For related structures, see: Patır et al. (1997 [triangle]); Hökelek et al. (1994 [triangle], 1998 [triangle], 1999 [triangle], 2004 [triangle], 2006 [triangle]); Hökelek & Patır (1999 [triangle], 2002 [triangle]); Çaylak et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1515-scheme1.jpg

Experimental

Crystal data

  • C22H19NO5S
  • M r = 409.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1515-efi1.jpg
  • a = 23.2155 (12) Å
  • b = 12.3581 (7) Å
  • c = 15.1001 (8) Å
  • β = 119.656 (1)°
  • V = 3764.7 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 100 K
  • 0.40 × 0.25 × 0.17 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.937, T max = 0.962
  • 15402 measured reflections
  • 4658 independent reflections
  • 3276 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.092
  • S = 0.94
  • 4658 reflections
  • 292 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021035/xu2536sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021035/xu2536Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

supplementary crystallographic information

Comment

Biologically active compounds, which have tetrahydrocarbazole substructure, have been shown to be useful for the treatment of a variety of medicinal conditions. Tetrahydrocarbazolone derivatives were used in the synthesis of Ondansetron, which is an excellent antiemetic drug inhibiting serotonin 5-HT3 receptor (Coates et al., 1987; Gutman & Cyjon, 2006; Molnar et al., 2006). Tetrahydrocarbazolone ester derivatives can also be considered to be synthetic precursors of tetracyclic aspidosperma alkaloids (Ergün, 2007). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been the subject of much interest in our laboratory. These include 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek et al., 1994), N-(2-methoxyethyl)-N-{2,3,4,9-tetrahydrospiro[1H-carbazole-1, 2-(1,3)dithiolane]-4-yl}benzene-sulfonamide, (III) (Patır et al., 1997), spiro[carbazole-1(2H),2'-[1,3]-dithiolan]-4(3H)-one, (IV) (Hökelek et al., 1998), 9-acetonyl-3-ethylidene-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3] dithiolan]-4-one, (V) (Hökelek et al., 1999), N-(2,2-dimethoxyethyl)-N -{9-methoxymethyl-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3]dithiolan] -4-yl}benzamide, (VI) (Hökelek & Patır, 1999), 3a,4,10,10b-tetrahydro-2H -furo[2,3-a]carbazol-5(3H)-one, (VII) (Çaylak et al., 2007); also the pentacyclic compounds 6-ethyl-4-(2-methoxyethyl)-2,6-methano-5-oxo-hexahydro- pyrrolo(2,3 - d)carbazole-1-spiro-2'-(1,3)dithiolane, (VIII) (Hökelek & Patır, 2002), N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan-2-yl)-1,2, 3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indol-2-one, (IX) (Hökelek et al., 2004) and 4-ethyl-6,6-ethylenedithio-2-(2-methoxyethyl)-7-methoxy- methylene-2,3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indol-3-one, (X) (Hökelek et al., 2006). The title compound, (I), may be considered as a synthetic precursor of tetracyclic indole alkaloids of biological interests. The present study was undertaken to ascertain its crystal structure.

The molecule of the title compound (Fig. 1) contains a carbazole skeleton with a tosyl group, where the bond lengths (Allen et al., 1987) and angles are within normal ranges, and generally agree with those in compounds (II)-(X). In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C1—C4/C4a/C9a), B (C4a/C5a/C8a/N9/C9a), C (C5a/C5—C8/C8a) and D (C10—C15) are planar. The carbazole skeleton, containing the rings A, B and C, is also nearly coplanar [with a maximum deviation of -0.043 (1) Å for atom C4a] with dihedral angles of A/B = 2.32 (6), A/C = 2.94 (5) and B/C = 1.77 (6) °. Ring D is oriented with respect to the planar carbazole skeleton at a dihedral angle of 82.25 (5)°. Intramolecular O—H···O hydrogen bond (Table 1) results in the formation of a planar six-membered ring, E (O1/O4/C3/C4/C17/H1A), which is oriented with respect to the adjacent planar carbazole skeleton at a dihedral angle of 3.06 (4)°. So, they are almost coplanar.

In the crystal structure, intermolecular C—H···O interactions (Table 1) link the molecules into infinite chains (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contacts between the benzene rings and between the pyrrole and benzene rings, Cg1—Cg1i and Cg2—Cg1i, [symmetry code:(i) -x, 1 - y, -z, where Cg1 and Cg2 are centroids of the rings A (C1—C4/C4a/C9a) and B (C4a/C5a/C8a/N9/C9a), respectively] may further stabilize the structure, with centroid-centroid distances of 3.374 (1) and 3.730 (1) Å, respectively. There also exists a weak C—H···π interaction (Table 1).

Experimental

For the preparation of the title compound, (I), a solution of ethyl-4-oxo-1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate (1.25 g, 4.9 mmol) in dichloromethane (25 ml) was cooled to 273 K, and then sodium hydroxide (40%, 5 ml), tetrabutylammonium hydrogen sulfate (0.10 g) and p-toluene sulfonyl chloride (0.95 g, 5 mmol) were added. The mixture was stirred for 1 h, and then washed with hydrochloric acid solution (10%, 50 ml), and the organic layer was dried with anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the resulting residue was chromatographed using silica gel and ethyl acetate-hexane (1:1). The product was recrystallized from ether (yield; 1.40 g, 71%, m.p. 459 K).

Refinement

Atoms H1A (for OH), H1, H2, H5, H6, H7 and H8 were located in difference syntheses and refined isotropically. The remaining H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
Fig. 2.
A partial packing diagram for (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C22H19NO5SF(000) = 1712
Mr = 409.44Dx = 1.445 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4061 reflections
a = 23.2155 (12) Åθ = 2.8–28.2°
b = 12.3581 (7) ŵ = 0.21 mm1
c = 15.1001 (8) ÅT = 100 K
β = 119.656 (1)°Block, colorless
V = 3764.7 (4) Å30.40 × 0.25 × 0.17 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer4658 independent reflections
Radiation source: fine-focus sealed tube3276 reflections with I > 2σ(I)
graphiteRint = 0.048
[var phi] and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −30→27
Tmin = 0.937, Tmax = 0.962k = −16→16
15402 measured reflectionsl = −15→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.94w = 1/[σ2(Fo2) + (0.0454P)2] where P = (Fo2 + 2Fc2)/3
4658 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.212099 (19)0.58317 (3)0.16682 (3)0.01509 (11)
O1−0.06829 (6)0.61107 (10)0.11936 (9)0.0201 (3)
H1A−0.0974 (11)0.5606 (17)0.1153 (16)0.048 (7)*
O20.23596 (5)0.66022 (9)0.12235 (8)0.0199 (3)
O30.21467 (5)0.47046 (9)0.14899 (9)0.0195 (3)
O4−0.12557 (5)0.43127 (10)0.11530 (9)0.0208 (3)
O5−0.07141 (5)0.27539 (9)0.13393 (9)0.0193 (3)
C10.08618 (8)0.42675 (13)0.13014 (12)0.0144 (3)
H10.1207 (8)0.3866 (13)0.1312 (12)0.018 (4)*
C20.03301 (8)0.37694 (14)0.12958 (12)0.0149 (3)
H20.0310 (8)0.2986 (14)0.1300 (13)0.018 (5)*
C3−0.01988 (7)0.43566 (13)0.12663 (11)0.0141 (3)
C4−0.01892 (7)0.54881 (14)0.12407 (11)0.0149 (3)
C4A0.03495 (7)0.60124 (13)0.12560 (11)0.0138 (3)
C50.01396 (8)0.80917 (14)0.11276 (13)0.0193 (4)
H5−0.0270 (9)0.8081 (15)0.1138 (14)0.027 (5)*
C5A0.04860 (8)0.71408 (13)0.12014 (12)0.0150 (3)
C60.04061 (9)0.90650 (14)0.10672 (13)0.0230 (4)
H60.0177 (8)0.9736 (14)0.1024 (12)0.016 (4)*
C70.10079 (9)0.91078 (15)0.10819 (14)0.0233 (4)
H70.1175 (9)0.9779 (15)0.1057 (14)0.031 (5)*
C80.13612 (9)0.81785 (14)0.11499 (13)0.0198 (4)
H80.1773 (9)0.8231 (14)0.1173 (14)0.029 (5)*
C8A0.10910 (8)0.71993 (13)0.12027 (12)0.0156 (3)
C9A0.08633 (7)0.53939 (13)0.12851 (11)0.0135 (3)
N90.13218 (6)0.61218 (10)0.12305 (10)0.0141 (3)
C100.25002 (7)0.60690 (13)0.29814 (12)0.0142 (3)
C110.28921 (8)0.69829 (13)0.33915 (13)0.0183 (4)
H110.29620.74600.29770.022*
C120.31773 (8)0.71715 (14)0.44291 (13)0.0193 (4)
H120.34480.77730.47110.023*
C130.30678 (8)0.64815 (13)0.50581 (12)0.0161 (4)
C140.26657 (8)0.55758 (13)0.46226 (13)0.0175 (4)
H140.25850.51090.50320.021*
C150.23858 (8)0.53610 (13)0.35925 (12)0.0171 (3)
H150.21240.47500.33120.020*
C160.33734 (8)0.67164 (14)0.61810 (12)0.0203 (4)
H16A0.31250.63540.64460.030*
H16B0.33670.74820.62820.030*
H16C0.38230.64630.65300.030*
C17−0.07694 (8)0.38237 (14)0.12438 (12)0.0160 (3)
C18−0.12612 (8)0.21883 (14)0.13567 (14)0.0220 (4)
H18A−0.16490.21810.06820.026*
H18B−0.13760.25430.18210.026*
C19−0.10271 (10)0.10619 (15)0.17057 (17)0.0345 (5)
H19A−0.13680.06640.17470.052*
H1B−0.06360.10830.23650.052*
H19C−0.09270.07150.12300.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01240 (19)0.0197 (2)0.0141 (2)−0.00144 (17)0.00723 (16)−0.00225 (17)
O10.0172 (6)0.0204 (7)0.0258 (7)0.0053 (5)0.0130 (6)0.0031 (5)
O20.0179 (6)0.0270 (7)0.0175 (6)−0.0049 (5)0.0107 (5)−0.0004 (5)
O30.0167 (6)0.0212 (6)0.0223 (6)−0.0009 (5)0.0109 (5)−0.0066 (5)
O40.0151 (6)0.0263 (7)0.0215 (6)0.0020 (5)0.0094 (5)0.0029 (5)
O50.0166 (6)0.0196 (6)0.0237 (6)−0.0042 (5)0.0115 (5)−0.0002 (5)
C10.0131 (8)0.0174 (9)0.0119 (8)0.0020 (7)0.0055 (7)−0.0004 (7)
C20.0173 (8)0.0151 (9)0.0110 (8)0.0009 (7)0.0060 (7)0.0003 (7)
C30.0127 (7)0.0194 (9)0.0094 (7)0.0011 (7)0.0048 (6)0.0008 (6)
C40.0128 (8)0.0211 (9)0.0099 (8)0.0026 (7)0.0048 (6)0.0012 (6)
C4A0.0136 (7)0.0157 (8)0.0101 (7)0.0016 (6)0.0044 (6)0.0009 (6)
C50.0188 (9)0.0192 (9)0.0188 (9)0.0034 (7)0.0084 (7)0.0007 (7)
C5A0.0156 (8)0.0172 (9)0.0102 (8)−0.0004 (7)0.0048 (7)−0.0001 (6)
C60.0257 (9)0.0161 (9)0.0228 (9)0.0039 (8)0.0086 (8)0.0004 (8)
C70.0292 (10)0.0153 (9)0.0225 (9)−0.0042 (8)0.0106 (8)0.0001 (8)
C80.0190 (9)0.0216 (9)0.0180 (9)−0.0033 (8)0.0084 (7)−0.0005 (7)
C8A0.0156 (8)0.0168 (9)0.0113 (8)0.0014 (7)0.0044 (7)−0.0009 (7)
C9A0.0115 (7)0.0185 (9)0.0099 (7)−0.0017 (6)0.0049 (6)−0.0017 (6)
N90.0115 (6)0.0153 (7)0.0148 (7)−0.0009 (5)0.0060 (6)−0.0007 (6)
C100.0113 (7)0.0186 (9)0.0121 (8)0.0008 (6)0.0052 (6)−0.0013 (6)
C110.0182 (8)0.0190 (9)0.0181 (8)−0.0030 (7)0.0093 (7)0.0019 (7)
C120.0179 (8)0.0175 (9)0.0195 (9)−0.0059 (7)0.0070 (7)−0.0024 (7)
C130.0146 (8)0.0181 (9)0.0160 (8)0.0020 (7)0.0079 (7)0.0006 (7)
C140.0164 (8)0.0195 (9)0.0182 (9)−0.0016 (7)0.0097 (7)0.0025 (7)
C150.0145 (8)0.0150 (8)0.0200 (9)−0.0034 (7)0.0072 (7)−0.0023 (7)
C160.0208 (9)0.0221 (10)0.0159 (9)−0.0022 (7)0.0075 (7)0.0000 (7)
C170.0158 (8)0.0208 (9)0.0091 (7)0.0001 (7)0.0045 (7)0.0010 (7)
C180.0173 (8)0.0254 (10)0.0244 (9)−0.0073 (8)0.0111 (8)−0.0009 (8)
C190.0290 (10)0.0273 (11)0.0485 (13)−0.0055 (9)0.0202 (10)0.0059 (10)

Geometric parameters (Å, °)

S1—O21.4257 (11)C8—H80.942 (18)
S1—O31.4255 (12)C8A—C81.383 (2)
S1—N91.6715 (13)C9A—C11.392 (2)
S1—C101.7508 (16)N9—C9A1.4268 (19)
O1—C41.3527 (18)N9—C8A1.428 (2)
O1—H1A0.90 (2)C10—C111.389 (2)
O4—C171.2269 (18)C10—C151.389 (2)
O5—C171.3293 (19)C11—H110.9300
O5—C181.4613 (19)C12—C111.386 (2)
C1—C21.376 (2)C12—C131.390 (2)
C1—H10.937 (16)C12—H120.9300
C2—H20.970 (17)C14—C131.396 (2)
C3—C21.408 (2)C14—H140.9300
C3—C41.399 (2)C15—C141.383 (2)
C3—C171.465 (2)C15—H150.9300
C4A—C41.398 (2)C16—C131.507 (2)
C4A—C9A1.399 (2)C16—H16A0.9600
C4A—C5A1.441 (2)C16—H16B0.9600
C5—H50.959 (17)C16—H16C0.9600
C5A—C51.397 (2)C18—C191.492 (2)
C5A—C8A1.405 (2)C18—H18A0.9700
C6—C51.376 (2)C18—H18B0.9700
C6—C71.387 (2)C19—H19A0.9600
C6—H60.970 (17)C19—H1B0.9600
C7—H70.925 (19)C19—H19C0.9600
C8—C71.385 (2)
O2—S1—N9106.52 (7)C4A—C9A—N9107.62 (14)
O2—S1—C10109.07 (7)C8A—N9—S1122.58 (10)
O3—S1—O2120.09 (7)C9A—N9—S1123.76 (11)
O3—S1—N9106.08 (7)C9A—N9—C8A108.04 (12)
O3—S1—C10109.45 (7)C11—C10—S1119.51 (12)
N9—S1—C10104.46 (7)C11—C10—C15120.95 (15)
C4—O1—H1A101.4 (14)C15—C10—S1119.51 (12)
C17—O5—C18116.08 (13)C10—C11—H11120.6
C2—C1—C9A117.22 (15)C12—C11—C10118.81 (15)
C2—C1—H1121.4 (10)C12—C11—H11120.6
C9A—C1—H1121.4 (10)C11—C12—C13121.51 (15)
C1—C2—C3122.37 (16)C11—C12—H12119.2
C1—C2—H2119.6 (10)C13—C12—H12119.2
C3—C2—H2118.1 (10)C12—C13—C14118.40 (15)
C2—C3—C17122.25 (15)C12—C13—C16120.46 (15)
C4—C3—C2119.37 (15)C14—C13—C16121.14 (14)
C4—C3—C17118.37 (14)C13—C14—H14119.5
O1—C4—C3123.04 (14)C15—C14—C13121.08 (15)
O1—C4—C4A117.70 (15)C15—C14—H14119.5
C4A—C4—C3119.26 (14)C10—C15—H15120.4
C4—C4A—C5A131.87 (15)C14—C15—C10119.24 (15)
C4—C4A—C9A119.28 (15)C14—C15—H15120.4
C9A—C4A—C5A108.78 (14)C13—C16—H16A109.5
C5A—C5—H5121.5 (11)C13—C16—H16B109.5
C6—C5—C5A118.72 (16)C13—C16—H16C109.5
C6—C5—H5119.7 (11)H16A—C16—H16B109.5
C5—C5A—C4A133.16 (15)H16A—C16—H16C109.5
C5—C5A—C8A119.49 (15)H16B—C16—H16C109.5
C8A—C5A—C4A107.32 (14)O4—C17—O5122.42 (15)
C5—C6—C7120.98 (17)O4—C17—C3123.56 (16)
C5—C6—H6120.1 (9)O5—C17—C3114.02 (14)
C7—C6—H6118.9 (9)O5—C18—C19106.54 (14)
C6—C7—H7118.2 (12)O5—C18—H18A110.4
C8—C7—C6121.62 (17)O5—C18—H18B110.4
C8—C7—H7120.2 (12)C19—C18—H18A110.4
C7—C8—H8119.9 (11)C19—C18—H18B110.4
C8A—C8—C7117.43 (16)H18A—C18—H18B108.6
C8A—C8—H8122.6 (11)C18—C19—H19A109.5
C5A—C8A—N9108.19 (13)C18—C19—H1B109.5
C8—C8A—C5A121.76 (15)C18—C19—H19C109.5
C8—C8A—N9130.01 (15)H19A—C19—H1B109.5
C1—C9A—N9129.78 (14)H19A—C19—H19C109.5
C1—C9A—C4A122.49 (14)H1B—C19—H19C109.5
O2—S1—N9—C8A−45.91 (13)C5A—C4A—C9A—C1−177.57 (14)
O2—S1—N9—C9A163.72 (12)C4—C4A—C9A—N9176.41 (13)
O3—S1—N9—C8A−174.93 (11)C5A—C4A—C9A—N9−1.04 (17)
O3—S1—N9—C9A34.70 (14)C4A—C5A—C5—C6−178.59 (16)
C10—S1—N9—C8A69.46 (13)C8A—C5A—C5—C6−0.6 (2)
C10—S1—N9—C9A−80.91 (13)C5—C5A—C8A—C81.1 (2)
O2—S1—C10—C117.52 (15)C4A—C5A—C8A—C8179.59 (14)
O2—S1—C10—C15−174.74 (12)C5—C5A—C8A—N9−176.99 (14)
O3—S1—C10—C11140.73 (13)C4A—C5A—C8A—N91.49 (17)
O3—S1—C10—C15−41.54 (14)C7—C6—C5—C5A−0.2 (3)
N9—S1—C10—C11−106.05 (13)C5—C6—C7—C80.5 (3)
N9—S1—C10—C1571.69 (14)C8A—C8—C7—C60.0 (3)
C18—O5—C17—O4−1.5 (2)N9—C8A—C8—C7176.83 (15)
C18—O5—C17—C3177.97 (13)C5A—C8A—C8—C7−0.8 (2)
C17—O5—C18—C19−167.19 (14)N9—C9A—C1—C2−176.19 (15)
C9A—C1—C2—C30.5 (2)C4A—C9A—C1—C2−0.5 (2)
C4—C3—C2—C10.1 (2)S1—N9—C8A—C5A−156.54 (11)
C17—C3—C2—C1179.00 (15)S1—N9—C8A—C825.6 (2)
C2—C3—C4—O1178.80 (14)C9A—N9—C8A—C5A−2.15 (16)
C2—C3—C4—C4A−0.7 (2)C9A—N9—C8A—C8179.97 (16)
C17—C3—C4—O1−0.2 (2)S1—N9—C9A—C1−27.8 (2)
C17—C3—C4—C4A−179.66 (14)S1—N9—C9A—C4A155.97 (11)
C2—C3—C17—O4−175.21 (15)C8A—N9—C9A—C1178.15 (15)
C2—C3—C17—O55.3 (2)C8A—N9—C9A—C4A1.96 (16)
C4—C3—C17—O43.7 (2)S1—C10—C15—C14−177.47 (12)
C4—C3—C17—O5−175.75 (13)C11—C10—C15—C140.2 (2)
C9A—C4A—C4—O1−178.80 (14)S1—C10—C11—C12178.63 (12)
C5A—C4A—C4—O1−2.0 (3)C15—C10—C11—C120.9 (2)
C9A—C4A—C4—C30.7 (2)C13—C12—C11—C10−1.4 (3)
C5A—C4A—C4—C3177.46 (16)C11—C12—C13—C140.7 (2)
C4—C4A—C5A—C50.9 (3)C11—C12—C13—C16−178.83 (15)
C4—C4A—C5A—C8A−177.30 (16)C15—C14—C13—C120.5 (2)
C9A—C4A—C5A—C5177.91 (17)C15—C14—C13—C16−179.98 (15)
C9A—C4A—C5A—C8A−0.28 (17)C10—C15—C14—C13−1.0 (2)
C4—C4A—C9A—C1−0.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.90 (3)1.73 (2)2.5746 (18)156 (2)
C12—H12···O1i0.932.553.410 (2)154
C16—H16B···Cg4ii0.962.913.559 (2)126

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2536).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.
  • Coates, I. H., Bell, J. A., Humber, D. C. & Evan, G. B. (1987). US Patent No. 4 695 578.
  • Ergün, Y. (2007). J. Heterocycl. Chem.44, 539–541.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gutman, D. & Cyjon, C. (2006). US Patent Appl. No. US2006/0041004 A1.
  • Hökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297-1299.
  • Hökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675–677.
  • Hökelek, T. & Patır, S. (2002). Acta Cryst. E58, o374–o376.
  • Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453.
  • Hökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114–116.
  • Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25–o27.
  • Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791–o793.
  • Molnar, S., Szabo, C., Sos, E. M., Salyi, S. & Tamas, T. (2006). US Patent. US 7 098 345 B2.
  • Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem.34, 1239–1242.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography