PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1685–o1686.
Published online 2009 June 27. doi:  10.1107/S1600536809022363
PMCID: PMC2969394

(5R,6S)-4-Isopropyl-5-methyl-6-phenyl-3-propanoyl-2H-1,3,4-oxadiazinan-2-one

Abstract

The title compound, C16H22N2O3, was synthesized during the course of a study on (1R,2S)-norephedrine-derived 1,3,4-oxadiazinan-2-ones. The conformation adopted by the isopropyl group is pseudo-axial relative to the oxadiazinan core. The allylic strain contributes to this conformational arrangement.

Related literature

For related structures and background, see: Casper, Blackburn et al. (2002 [triangle]); Casper, Burgeson et al. (2002 [triangle]); Casper & Hitchcock (2003 [triangle]); Evans et al. (1981 [triangle]); Ferrence et al. (2003 [triangle]), Hitchcock et al. (2001 [triangle]); Trepanier et al. (1968 [triangle]). The synthesis of the title compound is described by Hitchcock et al. (2004 [triangle]). For ring puckering analysis, see: Boeyens (1978 [triangle]); Cremer & Pople (1975 [triangle]); Spek (2009 [triangle]). For non-classical hydrogen bonding, see: Steiner (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1685-scheme1.jpg

Experimental

Crystal data

  • C16H22N2O3
  • M r = 290.36
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1685-efi1.jpg
  • a = 6.8644 (3) Å
  • b = 10.8370 (5) Å
  • c = 21.2348 (10) Å
  • V = 1579.65 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 140 K
  • 0.45 × 0.29 × 0.2 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003 [triangle]) T min = 0.878, T max = 0.983
  • 16184 measured reflections
  • 2263 independent reflections
  • 2231 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.099
  • S = 1.18
  • 2263 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022363/zl2203sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022363/zl2203Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This material is based upon work supported by the US National Science Foundation (CHE-0348158)(to GMF) and the American Chemical Society Petroleum Research Fund (to SRH & GMF). GMF thanks Adam Beitelman (ISU) and Youngstown State University Structure & Chemical Instrumentation Facility’s Matthias Zeller for data collection and useful discussion. The diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491, and YSU.

supplementary crystallographic information

Comment

The production of enantiomerically pure compounds has become increasingly important in the pharmaceutical industry. The high demand for a single enantiomer of a chiral intermediate has led to a wealth of methods for asymmetric synthesis (Hitchcock et al., 2004). While asymmetric catalysis and other methods have been functional in asymmetric synthesis, the important role of chiral auxiliaries in asymmetric synthesis is patent. Oxazolidin-2-ones, chiral auxiliaries first introduced by Evans et al. (Evans et al., 1981), have been of substance in areas of alkylation reactions, pericyclic reactions, and asymmetric aldol condensation reactions. Related, 1,3,4-oxadiazinan-2-one heterocycles have received little interest since their disclosure (Trepanier et al., 1968). It was not until recently that synthetic (Hitchcock et al., 2001) and conformational studies (Casper, Burgeson et al., 2002) of 1,3,4-oxadiazinan-2-one have been thoroughly performed.

Herein we report the X-ray structure of the N3-propanoyl acylated norephedrine-derived 1,3,4-oxadiazinan-2-one. The imide carbonyls adopt a syn-periplanar orientation, with an O21—C2—C17—O20 torsion angle of 23.67 (17)°. This result is consistent with those of previously reported N3 substituted oxadiazinan-2-ones (Casper, Blackburn et al., 2002; Casper, Burgeson et al., 2002; Ferrence et al., 2003). It is believed that in the oxadiazinaneone systems the syn-periplanar conformation arises from the lone pair repulsion interaction between the N4-nitrogen lone pair and the N3-carbonyl lone pair (Casper, Blackburn et al., 2002). However, in the case of the title compound, the repulsive interactions between the N3-substituent and the N4-isopropyl could also be held accountable for the syn-periplanar orientation. In fact, ring puckering analysis using PLATON (Spek, 2009; Cremer & Pople, 1975; Boeyens, 1978) indicates θ = 62.7 (2)° and Φ = 196.9 (2)° for the O1—C2—N3—N4—C5—C6 ring, which is consistent with a formal conformational assignment close to an idealized E4 envelope with N4 being the flap apex. Such a conformation possesses a pseudo-axial C5-methyl group, a typical pseudo-equatorial C6-phenyl ring, and a typical pseudo-axial N4-iso-propyl group. The imide carbonyls, although not syn-parallel, indicate the existence of resonance delocalization due to their approximately planar conformation [torsion angle 23.67 (17)°]. Based on previous studies (Casper, Blackburn et al., 2002), the N3-substituent is held rigidly due to resonance interactions, while the N4-isopropyl group adopts a pseudoaxial orientation to relieve allylic strain on the system. Both intra- and inter-molecular non-classical H-bonding interactions exist. Those interactions shorter than 2.7 Å with a >90° D—H···A angle are shown in Table 1 (Steiner, 1996). It appears that such non-classical H-bonding interactions may constitute the dominant packing forces in this structure; however, evaluation of additional related structures will be necessary before any particular rational for these interactions is defensible.

Experimental

The title compound was synthesized by acylation of norephedrine derived 1,3,4-oxadiazinan-2-one using propanoyl (Hitchcock et al., 2004). Single crystals were grown by vapor diffusion of hexane into a methylene chloride solution of the title compound.

Refinement

All non-H atoms were refined anisotropically without disorder. All H atoms were initially identified through difference Fourier syntheses and then removed and included in the refinement in the riding-model approximation with fixed individual displacement parameters [U(Hiso) = 1.2Ueq(C) or U(Hiso) = 1.5Ueq(Cmethyl)] using a riding model with Caromatic—H = 0.95 Å, Cmethyl—H = 0.98 Å, Cmethylene—H = 0.99 Å or Cmethine—H = 1.00 Å. Friedel opposites were merged.

Figures

Fig. 1.
The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
J mol enhanced figure of the title compound. The default view shows a space-filling depiction of the asymmetric unit. Key torsion angles may be highlighted when viewing the active enhanced figure.

Crystal data

C16H22N2O3F(000) = 624
Mr = 290.36Dx = 1.221 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7989 reflections
a = 6.8644 (3) Åθ = 2.7–30.4°
b = 10.8370 (5) ŵ = 0.09 mm1
c = 21.2348 (10) ÅT = 140 K
V = 1579.65 (12) Å3Needle, colourless
Z = 40.45 × 0.29 × 0.2 mm

Data collection

Bruker SMART APEX CCD diffractometer2263 independent reflections
Radiation source: sealed tube2231 reflections with I > 2σ(I)
graphiteRint = 0.022
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003)h = −9→9
Tmin = 0.878, Tmax = 0.983k = −14→14
16184 measured reflectionsl = −28→27

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039w = 1/[σ2(Fo2) + (0.0467P)2 + 0.4577P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.18Δρmax = 0.32 e Å3
2263 reflectionsΔρmin = −0.21 e Å3
190 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.75439 (18)0.26491 (11)0.44189 (6)0.0196 (3)
C20.8863 (3)0.34214 (16)0.41773 (8)0.0188 (3)
N30.8136 (2)0.44240 (13)0.38381 (7)0.0178 (3)
N40.6120 (2)0.47290 (13)0.39003 (6)0.0166 (3)
C50.5006 (2)0.36039 (15)0.37440 (7)0.0165 (3)
H50.35930.38030.37960.020*
C60.5509 (2)0.25838 (16)0.42207 (8)0.0163 (3)
H60.46830.27170.46020.020*
C70.5138 (3)0.12801 (16)0.39890 (8)0.0187 (3)
C80.6638 (3)0.05224 (17)0.37881 (9)0.0262 (4)
H80.79460.08060.38070.031*
C90.6234 (4)−0.06520 (19)0.35596 (10)0.0326 (5)
H90.7270−0.11660.34210.039*
C100.4342 (4)−0.10773 (17)0.35327 (9)0.0320 (5)
H100.4073−0.18830.33800.038*
C110.2841 (3)−0.03214 (19)0.37300 (10)0.0315 (4)
H110.1535−0.06080.37100.038*
C120.3230 (3)0.08577 (17)0.39586 (9)0.0251 (4)
H120.21910.13730.40940.030*
C130.5331 (3)0.32666 (16)0.30550 (8)0.0208 (3)
H13A0.49710.39680.27880.031*
H13B0.45230.25520.29460.031*
H13C0.67060.30630.29880.031*
C140.5736 (3)0.52506 (17)0.45405 (8)0.0225 (4)
H140.60170.46070.48650.027*
C150.7025 (3)0.63686 (18)0.46590 (10)0.0310 (4)
H15A0.83960.61230.46320.046*
H15B0.67560.67000.50790.046*
H15C0.67520.70020.43420.046*
C160.3600 (3)0.5623 (2)0.45843 (11)0.0344 (5)
H16B0.27760.48990.45110.052*
H16A0.33180.62530.42660.052*
H16C0.33340.59580.50040.052*
C170.9228 (2)0.50008 (16)0.33572 (8)0.0195 (3)
C180.8239 (3)0.60532 (17)0.30136 (9)0.0245 (4)
H18A0.72240.57180.27300.029*
H18B0.75940.66010.33230.029*
C190.9691 (3)0.6793 (2)0.26320 (11)0.0344 (5)
H19C0.90130.74650.24140.052*
H19B1.03170.62540.23220.052*
H19A1.06820.71390.29130.052*
O201.08450 (19)0.46487 (14)0.32269 (7)0.0296 (3)
O211.05596 (18)0.32428 (13)0.42830 (6)0.0266 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0168 (6)0.0205 (6)0.0214 (6)−0.0011 (5)−0.0033 (5)0.0057 (5)
C20.0173 (7)0.0213 (8)0.0177 (7)0.0005 (7)−0.0004 (6)0.0014 (6)
N30.0122 (6)0.0190 (6)0.0222 (7)0.0004 (6)0.0001 (5)0.0033 (5)
N40.0121 (6)0.0184 (6)0.0194 (6)0.0011 (5)0.0013 (5)−0.0003 (5)
C50.0144 (7)0.0168 (7)0.0183 (7)0.0007 (6)−0.0004 (6)0.0017 (6)
C60.0126 (7)0.0188 (7)0.0174 (7)−0.0009 (6)0.0006 (6)0.0014 (6)
C70.0216 (8)0.0183 (7)0.0163 (7)−0.0009 (7)0.0006 (6)0.0015 (6)
C80.0260 (9)0.0229 (8)0.0297 (9)0.0018 (8)0.0019 (8)−0.0018 (7)
C90.0420 (12)0.0240 (9)0.0318 (10)0.0069 (9)0.0038 (9)−0.0036 (8)
C100.0539 (13)0.0182 (8)0.0239 (9)−0.0074 (9)−0.0026 (9)−0.0011 (7)
C110.0337 (10)0.0287 (10)0.0322 (10)−0.0126 (9)−0.0017 (9)0.0020 (8)
C120.0238 (9)0.0230 (8)0.0287 (9)−0.0032 (8)0.0008 (8)0.0002 (7)
C130.0223 (8)0.0226 (8)0.0176 (7)−0.0019 (8)−0.0014 (6)0.0010 (6)
C140.0281 (9)0.0190 (7)0.0203 (8)−0.0011 (7)0.0038 (7)−0.0027 (6)
C150.0372 (11)0.0242 (9)0.0315 (9)−0.0071 (8)−0.0018 (9)−0.0061 (8)
C160.0311 (10)0.0337 (10)0.0384 (11)0.0030 (9)0.0099 (9)−0.0119 (9)
C170.0172 (7)0.0208 (8)0.0206 (7)−0.0032 (7)0.0000 (6)0.0024 (6)
C180.0202 (8)0.0239 (8)0.0295 (9)0.0003 (8)0.0032 (7)0.0086 (7)
C190.0281 (10)0.0326 (10)0.0424 (11)−0.0031 (9)0.0066 (9)0.0167 (9)
O200.0183 (6)0.0387 (8)0.0318 (7)0.0052 (6)0.0061 (5)0.0110 (6)
O210.0160 (6)0.0325 (7)0.0314 (7)0.0020 (6)−0.0018 (5)0.0102 (6)

Geometric parameters (Å, °)

O1—C21.336 (2)C11—H110.9500
O1—C61.460 (2)C12—H120.9500
C2—O211.202 (2)C13—H13A0.9800
C2—N31.396 (2)C13—H13B0.9800
N3—C171.413 (2)C13—H13C0.9800
N3—N41.4291 (19)C14—C151.521 (3)
N4—C51.477 (2)C14—C161.523 (3)
N4—C141.496 (2)C14—H141.0000
C5—C131.524 (2)C15—H15A0.9800
C5—C61.538 (2)C15—H15B0.9800
C5—H51.0000C15—H15C0.9800
C6—C71.518 (2)C16—H16B0.9800
C6—H61.0000C16—H16A0.9800
C7—C81.384 (3)C16—H16C0.9800
C7—C121.389 (3)C17—O201.206 (2)
C8—C91.390 (3)C17—C181.515 (2)
C8—H80.9500C18—C191.514 (3)
C9—C101.379 (3)C18—H18A0.9900
C9—H90.9500C18—H18B0.9900
C10—C111.381 (3)C19—H19C0.9800
C10—H100.9500C19—H19B0.9800
C11—C121.393 (3)C19—H19A0.9800
C2—O1—C6124.62 (13)C5—C13—H13A109.5
O21—C2—O1118.98 (16)C5—C13—H13B109.5
O21—C2—N3124.62 (16)H13A—C13—H13B109.5
O1—C2—N3116.34 (15)C5—C13—H13C109.5
C2—N3—C17121.86 (14)H13A—C13—H13C109.5
C2—N3—N4118.59 (14)H13B—C13—H13C109.5
C17—N3—N4118.58 (14)N4—C14—C15110.40 (15)
N3—N4—C5106.83 (12)N4—C14—C16108.99 (15)
N3—N4—C14110.01 (13)C15—C14—C16109.78 (16)
C5—N4—C14115.14 (13)N4—C14—H14109.2
N4—C5—C13109.75 (13)C15—C14—H14109.2
N4—C5—C6109.23 (13)C16—C14—H14109.2
C13—C5—C6115.24 (14)C14—C15—H15A109.5
N4—C5—H5107.4C14—C15—H15B109.5
C13—C5—H5107.4H15A—C15—H15B109.5
C6—C5—H5107.4C14—C15—H15C109.5
O1—C6—C7107.41 (14)H15A—C15—H15C109.5
O1—C6—C5111.69 (13)H15B—C15—H15C109.5
C7—C6—C5114.71 (13)C14—C16—H16B109.5
O1—C6—H6107.6C14—C16—H16A109.5
C7—C6—H6107.6H16B—C16—H16A109.5
C5—C6—H6107.6C14—C16—H16C109.5
C8—C7—C12119.44 (17)H16B—C16—H16C109.5
C8—C7—C6121.81 (16)H16A—C16—H16C109.5
C12—C7—C6118.71 (15)O20—C17—N3120.94 (16)
C7—C8—C9120.16 (19)O20—C17—C18122.72 (16)
C7—C8—H8119.9N3—C17—C18116.33 (15)
C9—C8—H8119.9C19—C18—C17111.18 (16)
C10—C9—C8120.54 (19)C19—C18—H18A109.4
C10—C9—H9119.7C17—C18—H18A109.4
C8—C9—H9119.7C19—C18—H18B109.4
C9—C10—C11119.44 (18)C17—C18—H18B109.4
C9—C10—H10120.3H18A—C18—H18B108.0
C11—C10—H10120.3C18—C19—H19C109.5
C10—C11—C12120.46 (19)C18—C19—H19B109.5
C10—C11—H11119.8H19C—C19—H19B109.5
C12—C11—H11119.8C18—C19—H19A109.5
C7—C12—C11119.96 (18)H19C—C19—H19A109.5
C7—C12—H12120.0H19B—C19—H19A109.5
C11—C12—H12120.0
C6—O1—C2—O21−165.68 (17)O1—C6—C7—C12160.20 (15)
C6—O1—C2—N317.1 (2)C5—C6—C7—C12−75.0 (2)
O21—C2—N3—C1729.6 (3)C12—C7—C8—C9−0.2 (3)
O1—C2—N3—C17−153.40 (15)C6—C7—C8—C9−177.88 (17)
O21—C2—N3—N4−161.87 (17)C7—C8—C9—C10−0.3 (3)
O1—C2—N3—N415.2 (2)C8—C9—C10—C110.6 (3)
C2—N3—N4—C5−55.15 (18)C9—C10—C11—C12−0.4 (3)
C17—N3—N4—C5113.79 (15)C8—C7—C12—C110.3 (3)
C2—N3—N4—C1470.48 (18)C6—C7—C12—C11178.08 (16)
C17—N3—N4—C14−120.58 (16)C10—C11—C12—C70.0 (3)
N3—N4—C5—C13−64.81 (16)N3—N4—C14—C1556.73 (18)
C14—N4—C5—C13172.72 (14)C5—N4—C14—C15177.48 (15)
N3—N4—C5—C662.43 (16)N3—N4—C14—C16177.38 (15)
C14—N4—C5—C6−60.04 (17)C5—N4—C14—C16−61.87 (18)
C2—O1—C6—C7120.86 (16)C2—N3—C17—O20−0.7 (3)
C2—O1—C6—C5−5.7 (2)N4—N3—C17—O20−169.21 (16)
N4—C5—C6—O1−34.68 (18)C2—N3—C17—C18178.17 (16)
C13—C5—C6—O189.39 (17)N4—N3—C17—C189.6 (2)
N4—C5—C6—C7−157.20 (14)O20—C17—C18—C19−15.4 (3)
C13—C5—C6—C7−33.1 (2)N3—C17—C18—C19165.80 (17)
O1—C6—C7—C8−22.1 (2)O21—C2—C17—O2023.67 (17)
C5—C6—C7—C8102.74 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8···O10.952.402.737 (2)101
C14—H14···O11.002.553.091 (2)114
C15—H15A···N30.982.502.839 (2)100
C5—H5···O20i1.002.423.263 (2)142
C16—H16B···O21i0.982.403.380 (3)175
C12—H12···O21i0.952.353.243 (2)156
C5—H5···O21i1.002.403.283 (2)147
C6—H6···O1ii1.002.583.543 (2)163

Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2203).

References

  • Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct.8, 317–320.
  • Bruker (2003). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Casper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002). J. Org. Chem.67, 8871-8876. [PubMed]
  • Casper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002). Org. Lett.4, 3739-3742. [PubMed]
  • Casper, D. M. & Hitchcock, S. R. (2003). Tetrahedron Asymmetry, 14, 517-521.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Evans, D. A., Bartolli, J. & Shih, T. L. (1981). J. Am. Chem. Soc.103, 2127–2129.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ferrence, G. M., Esken, J. M., Blackburn, J. R. & Hitchcock, S. R. (2003). Acta Cryst. E59, o212–o214.
  • Hitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M. & Esken, J. M. (2004). J. Org. Chem.69, 714-718. [PubMed]
  • Hitchcock, S. R., Nora, G. P., Casper, D. M., Squire, M. D., Maroules, C. D., Ferrence, G. M., Szczepura, L. F. & Standard, J. M. (2001). Tetrahedron, 57, 9789-9798.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Steiner, T. (1996). Cryst. Rev., 6, 1–57.
  • Trepanier, D. L., Elbe, J. N. & Harris, G. H. (1968). J. Med. Chem.11, 357–361. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography