PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1665–o1666.
Published online 2009 June 24. doi:  10.1107/S160053680902296X
PMCID: PMC2969389

4-Bromo­seleno­anisole

Abstract

The title compound, 1-bromo-4-methyl­seleno­benzene, C7H7BrSe, was prepared by methyl­ation of 4-bromo­seleno­phenolate with methyl iodide, and crystals suitable for structure determination were obtained by sublimation. The mol­ecule is essentially planar; the Se—Me bond is rotated by only 2.59 (19)° out of the least-squares plane of the benzene ring. The most pronounced intermolecular interactions are two hydrogen bonds of the type C—H(...)π, which determine a herring-bone pattern in the crystal packing.

Related literature

For related selenobenzene structures, see: Oddershede et al. (2003 [triangle]); Sørensen & Stuhr-Hansen (2009 [triangle]); Stuhr-Hansen et al. (2009 [triangle]). For the 77Se-NMR spctrum, see: Eggert et al. (1986 [triangle]). For the melting point, see: Gilow et al. (1968 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1665-scheme1.jpg

Experimental

Crystal data

  • C7H7BrSe
  • M r = 250.00
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1665-efi1.jpg
  • a = 5.8298 (8) Å
  • b = 7.0671 (11) Å
  • c = 18.776 (6) Å
  • V = 773.6 (3) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 11.86 mm−1
  • T = 122 K
  • 0.36 × 0.09 × 0.09 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: numerical (DeTitta, 1985 [triangle]) T min = 0.145, T max = 0.454
  • 5823 measured reflections
  • 1590 independent reflections
  • 1590 reflections with I > 2σ(I)
  • R int = 0.031
  • 5 standard reflections frequency: 166.7 min intensity decay: 8.7%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.075
  • S = 1.15
  • 1590 reflections
  • 83 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.62 e Å−3
  • Δρmin = −1.30 e Å−3
  • Absolute structure: Flack (1983 [triangle])
  • Flack parameter: −0.01 (4)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: DREAR (Blessing, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902296X/fj2225sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902296X/fj2225Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to thank Flemming Hansen, Centre for Crystallographic Studies, University of Copenhagen for obtaining the crystallographic data. HOS acknowledge support from the EU Sixth Framework Programme TotalCryst and the Danish National Research Foundation.

supplementary crystallographic information

Experimental

The title compound was synthesized as described below. To a stirred solution containing di(4-bromophenyl) diselenide (2.35 g, 5 mmol) and hydrazine hydrate (2.75 mmol) in DMSO (8 ml) was added 25% methanolic sodium methanolate (approximately 2 g, the last 0.2 g added dropwise with intervals of 5 s until the yellow color of di(4-bromophenyl) diselenide disappeared). 4-Methyliodide (1.70 g, 12 mmol) was added and the reaction mixture was further stirred for 10 minutes. The clear colourless reaction mixture was diluted with water (100 ml) and extracted with ether (3 x 25 ml). The combined organic phases were washed with water (15 ml), filtered through alumina (neutral, 6 g) by means of pentane and the solvent was evaporated in vacuo. Sublimation (200 °C, 5 m mH g) gave the title compound 4-bromoselenoanisol (2.24 g, 90%) as long white needles in a quality suitable for structure determination by single-crystal x-ray diffraction; mp 47–48 °C (lit. (Gilow et al., 1968) mp 46–47 °C). C7H7BrSe: found C 33.69% H 2.57%; calc. C 33.63% H 2.82%. Mass spectrum (EI; m/z, relative intensity): 250 (M+, 100), 235 (67), 171 (7), 156 (56). 1H-NMR (CDCl3) δ: 2.33 (3H, s), 7.26 (2H, d, J = 8.6 Hz), 7.36 (2H, d, J = 8.6 Hz). 77Se-NMR (Eggert et al., 1986) (CDCl3) δ: 211 p.p.m..

Refinement

Hydrogen atoms were found in the difference Fourier map. All hydrogen atoms were treated as riding atoms with C—H distances of 0.95 for Car and 0.98 for the CMe. Isotropic displacement parameters for all H atoms were constrained to 1.2Ueq of the connected non-hydrogen atom (1.5Ueq for Me groups).

Figures

Fig. 1.
Ortep drawing (Johnson, 1976) of the title compound including labelling of the atoms. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres with an arbitrary radii.

Crystal data

C7H7BrSeF(000) = 472
Mr = 250.00Dx = 2.147 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2nCell parameters from 20 reflections
a = 5.8298 (8) Åθ = 39.2–40.3°
b = 7.0671 (11) ŵ = 11.86 mm1
c = 18.776 (6) ÅT = 122 K
V = 773.6 (3) Å3Needle, white
Z = 40.36 × 0.09 × 0.09 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1590 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
graphiteθmax = 74.8°, θmin = 4.7°
ω–2θ scansh = −7→7
Absorption correction: numerical (DeTitta, 1985)k = −8→8
Tmin = 0.145, Tmax = 0.454l = −23→23
5823 measured reflections5 standard reflections every 166.7 min
1590 independent reflections intensity decay: 8.7%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027w = 1/[σ2(Fo2) + (0.0537P)2 + 0.4964P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.62 e Å3
1590 reflectionsΔρmin = −1.29 e Å3
83 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0128 (5)
Primary atom site location: heavy-atom methodAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapFlack parameter: −0.01 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Se1−0.08215 (7)0.05711 (4)0.00008 (2)0.02110 (15)
Br10.38155 (8)−0.04502 (5)0.317143 (19)0.02756 (16)
C10.0636 (7)0.0211 (5)0.0905 (2)0.0176 (7)
C2−0.0585 (6)0.0834 (5)0.1507 (2)0.0185 (7)
H2−0.20550.13950.14500.022*
C30.0336 (8)0.0636 (4)0.2178 (2)0.0219 (8)
H3−0.04780.10660.25860.026*
C40.2483 (6)−0.0207 (5)0.22490 (18)0.0184 (7)
C50.3691 (6)−0.0843 (5)0.1666 (2)0.0184 (7)
H50.5149−0.14200.17270.022*
C60.2759 (7)−0.0633 (4)0.0982 (2)0.0193 (8)
H60.3579−0.10670.05770.023*
C70.1556 (9)−0.0397 (6)−0.0615 (3)0.0300 (9)
H7A0.29970.0268−0.05170.045*
H7B0.1117−0.0195−0.11130.045*
H7C0.1759−0.1753−0.05280.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Se10.0191 (2)0.0252 (2)0.0190 (2)0.00090 (10)−0.00294 (17)0.00115 (15)
Br10.0276 (2)0.0363 (3)0.0188 (2)0.00065 (13)−0.00506 (19)0.00065 (16)
C10.0174 (18)0.0161 (14)0.0193 (18)−0.0014 (12)−0.0005 (13)0.0019 (13)
C20.0120 (15)0.0178 (15)0.026 (2)0.0030 (12)0.0026 (13)−0.0003 (13)
C30.022 (2)0.0201 (16)0.024 (2)0.0001 (11)0.0034 (17)−0.0019 (12)
C40.0186 (19)0.0202 (16)0.0166 (17)−0.0032 (12)−0.0007 (15)0.0015 (12)
C50.0168 (15)0.0206 (14)0.0177 (18)−0.0018 (12)0.0009 (13)−0.0014 (13)
C60.0170 (19)0.0178 (16)0.0230 (19)0.0009 (10)0.0012 (16)−0.0022 (11)
C70.032 (2)0.039 (2)0.019 (2)0.0061 (15)0.0035 (18)−0.0038 (14)

Geometric parameters (Å, °)

Se1—C11.916 (4)C3—H30.9500
Se1—C71.930 (5)C4—C51.377 (5)
Br1—C41.906 (4)C5—C61.401 (6)
C1—C61.382 (5)C5—H50.9500
C1—C21.406 (5)C6—H60.9500
C2—C31.377 (6)C7—H7A0.9800
C2—H20.9500C7—H7B0.9800
C3—C41.392 (6)C7—H7C0.9800
C1—Se1—C799.5 (2)C4—C5—C6119.7 (3)
C6—C1—C2120.3 (4)C4—C5—H5120.2
C6—C1—Se1123.2 (3)C6—C5—H5120.2
C2—C1—Se1116.5 (3)C1—C6—C5119.3 (4)
C3—C2—C1120.4 (4)C1—C6—H6120.4
C3—C2—H2119.8C5—C6—H6120.4
C1—C2—H2119.8Se1—C7—H7A109.5
C2—C3—C4118.8 (4)Se1—C7—H7B109.5
C2—C3—H3120.6H7A—C7—H7B109.5
C4—C3—H3120.6Se1—C7—H7C109.5
C5—C4—C3121.6 (3)H7A—C7—H7C109.5
C5—C4—Br1119.0 (3)H7B—C7—H7C109.5
C3—C4—Br1119.5 (3)
C7—Se1—C1—C6−3.0 (3)C2—C3—C4—Br1178.8 (3)
C7—Se1—C1—C2177.8 (3)C3—C4—C5—C60.4 (6)
C6—C1—C2—C31.0 (5)Br1—C4—C5—C6−178.5 (3)
Se1—C1—C2—C3−179.8 (3)C2—C1—C6—C5−0.7 (5)
C1—C2—C3—C4−0.6 (5)Se1—C1—C6—C5−179.8 (3)
C2—C3—C4—C5−0.1 (5)C4—C5—C6—C10.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···C2i0.952.843.747 (4)159
C5—H5···C5ii0.952.833.740 (5)160

Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x+1/2, −y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2225).

References

  • Blessing, R. H. (1987). Crystallogr. Rev.1 3–58.
  • DeTitta, G. T. (1985). J. Appl. Cryst.18, 75–79.
  • Eggert, H., Nielsen, O. & Henriksen, L. (1986). J. Am. Chem. Soc.108, 1725–1730.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gilow, H. M., Camp, R. B. & Clifton, E. C. (1968). J. Org. Chem.33, 230–233.
  • Oddershede, J., Henriksen, L. & Larsen, S. (2003). Org. Biomol. Chem.1, 1053–1060. [PubMed]
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sørensen, H. O. & Stuhr-Hansen, N. (2009). Acta Cryst. E65, o13. [PMC free article] [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stuhr-Hansen, N., Götze, T. F., Henriksen, L., Sølling, T. I., Langkilde, A. & Sørensen, H. O. (2009). Heteroat. Chem.20, 101–108.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography