PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m763.
Published online 2009 June 13. doi:  10.1107/S1600536809021680
PMCID: PMC2969383

Bis(3,5-dimethyl­pyridine-κN)bis­(tri-tert-butoxy­silanethiol­ato-κS)chromium(II) toluene solvate

Abstract

In the title chromium silanethiol­ate, [Cr(C12H27O3SSi)2(C7H9N)2]·C7H8, the CrII atom is coordinated by two S and two N atoms in a distorted square-planar geometrical arrangement. The mononuclear mol­ecule lies on a twofold axis that passes through the pyridine N atoms. The toluene solvent mol­ecule is equally disordered about a twofold axis.

Related literature

For the synthetic procedures, see: Perrin & Armarego (1988 [triangle]); Piękoś & Wojnowski (1962 [triangle]); Wojnowska & Wojnowski (1974 [triangle]). For the use of such complexes in model studies of proteins, see: Becker et al. (2002 [triangle]); Dołęga et al. (2008 [triangle]). For another Cr–thiol­ate, see: Dorfman et al. (1985 [triangle]). For related strutures, see: Ciborska et al. (2007 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m763-scheme1.jpg

Experimental

Crystal data

  • [Cr(C12H27O3SSi)2(C7H9N)2]·C7H8
  • M r = 917.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m763-efi1.jpg
  • a = 19.6147 (4) Å
  • b = 17.1521 (17) Å
  • c = 17.2221 (9) Å
  • β = 112.047 (5)°
  • V = 5370.4 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 120 K
  • 0.32 × 0.30 × 0.19 mm

Data collection

  • Oxford Diffraction KM-4-CCD diffractometer
  • Absorption correction: none
  • 18436 measured reflections
  • 5260 independent reflections
  • 4788 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.148
  • S = 1.11
  • 5260 reflections
  • 296 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 1.14 e Å−3
  • Δρmin = −0.78 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021680/ng2589sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021680/ng2589Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Anna Dolega for helpful discussions during the preparation of the manuscript.

supplementary crystallographic information

Comment

The large development of transition-metal silanethiolate chemistry results from its potential to form new types of complexes with interesting chemical properties. These complexes may be used in model studies on structural and catalytic metal centers in proteins (Becker et al. 2002; Dołęga et al. 2008). Here we present the synthesis and molecular structure of the chromium(II), tri-tert-butoxysilanethiolate complex [Cr(C12H27O3SSi)2(C7H9N)2] C7H8.The crystal structure of the title compound (I) is one of the few structurally defined four-coordinate CrII thiolate complexes (Dorfman et al. 1985; Ciborska et al. 2008). This complex was obtained as light-blue crystals in the reaction of anhydrous CrII chloride with sodium tri-tert-butoxysilanethiolate and 3,5-dimethylpyridine. The CrII ion is coordinated by two S atoms from the tri-tert-butoxysilanethiolate ligands and two N atoms from the 3,5-dimethylpyridine molecules. The trans angles of the square base are then described by S—Cr—S and N—Cr—N, which are very close to 180°. The Cr—S bond lengths in (I) are very similar to the corresponding values of ca 2.4 Å observed in the other silanethiolates (Ciborska et al.2007). The Cr—N bond lengths are like these found in the [Cr(C12H27O3SSi)2(C6H15N)2]. Selected data of important bond lengths and angles are compared in Table 1.

Experimental

The synthesis was carried out under an atmosphere of nitrogen, using standard Schlenk techniques. Solvents and the amine were purified and dried by standard methods (Perrin & Armarego, 1988). The substrate (tBuO)3SiSNa was prepared according to literature methods (Piękoś & Wojnowski, 1962; Wojnowska & Wojnowski, 1974). The title compound was synthesized by addition of the CrCl2 solution (0.143 g, 1.16 mmol) in tetrahydrofuran (10 ml) to (tBuO)3SiSNa solution (0.833 g, 2.7 mmol) in toluene (10 ml) and stirring for 1 h.

3,5-Dimethylpyridine (0,267 g, 0.28 ml, 2.5 mmol) was subsequently added to the solution and stirred for next 12 h. After that the mixture was concentrated and cooled (250 K) to afford light-blue crystals.

Refinement

All C–H hydrogen atoms were refined as riding on carbon atoms with methyl C–H = 0.98 Å, aromatic C–H = 0.95 Å and Uĩso(H)=1.2 Ueq(C) for aromatic CH and 1.5Ueq(C) for methyl groups.

The toluene molecule was allowed to refine off the twofold axis. The aromatic ring was refined as a rigid hexagon of 1.39 Å sides. The phenyl–methyl distance was restrained to 1.50±0.01 Å.

Figures

Fig. 1.
A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted.

Crystal data

[Cr(C12H27O3SSi)2(C7H9N)2]·C7H8F(000) = 1984
Mr = 917.41Dx = 1.135 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 20255 reflections
a = 19.6147 (4) Åθ = 2.4–32.5°
b = 17.1521 (17) ŵ = 0.38 mm1
c = 17.2221 (9) ÅT = 120 K
β = 112.047 (5)°Prism, blue
V = 5370.4 (6) Å30.32 × 0.3 × 0.19 mm
Z = 4

Data collection

Oxford Diffraction KM-4-CCD diffractometer4788 reflections with I > 2σ(I)
graphiteRint = 0.031
Detector resolution: 8.1883 pixels mm-1θmax = 26°, θmin = 2.7°
ω scansh = −24→24
18436 measured reflectionsk = −15→21
5260 independent reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.0822P)2 + 9.051P] where P = (Fo2 + 2Fc2)/3
5260 reflections(Δ/σ)max < 0.001
296 parametersΔρmax = 1.14 e Å3
1 restraintΔρmin = −0.78 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cr100.01937 (3)0.250.01892 (16)
S10.10684 (3)0.02265 (3)0.38160 (3)0.01235 (16)
Si10.17518 (3)0.00414 (4)0.31651 (4)0.02545 (17)
O10.12513 (9)0.02386 (9)0.21779 (10)0.0220 (4)
O20.25116 (9)0.05527 (10)0.35177 (10)0.0244 (4)
O30.20219 (9)−0.08576 (9)0.31481 (10)0.0244 (4)
N100.14391 (15)0.250.0205 (6)
N20−0.10614 (15)0.250.0200 (5)
C10.14053 (14)0.01078 (14)0.14221 (14)0.0240 (5)
C20.11660 (17)−0.07146 (16)0.11088 (17)0.0351 (6)
H2A0.1434−0.10910.15450.053*
H2B0.1273−0.08130.06050.053*
H2C0.0637−0.07710.09740.053*
C30.09435 (17)0.07101 (17)0.07930 (16)0.0364 (6)
H3A0.04220.0630.06920.055*
H3B0.1020.06520.02650.055*
H3C0.10910.12350.10180.055*
C40.22130 (16)0.02209 (17)0.15862 (17)0.0346 (6)
H4A0.23540.0760.17630.052*
H4B0.23010.01130.10730.052*
H4C0.2507−0.01370.20290.052*
C50.26593 (14)0.13476 (14)0.38092 (16)0.0274 (5)
C60.20424 (15)0.18905 (15)0.32786 (19)0.0364 (6)
H6A0.19760.1840.26880.055*
H6B0.21710.2430.3460.055*
H6C0.15840.17490.33470.055*
C70.33779 (15)0.15658 (17)0.37182 (18)0.0356 (6)
H7A0.37620.11930.4030.053*
H7B0.35250.20920.39410.053*
H7C0.3310.15530.31250.053*
C80.27486 (16)0.13697 (17)0.47279 (17)0.0369 (6)
H8A0.22820.12270.47760.055*
H8B0.28890.18970.4950.055*
H8C0.31320.10.50480.055*
C90.25415 (14)−0.13435 (15)0.37758 (16)0.0291 (5)
C100.32921 (17)−0.1211 (2)0.3753 (2)0.0541 (9)
H10A0.3283−0.13420.31950.081*
H10B0.3652−0.15420.41730.081*
H10C0.343−0.06630.38750.081*
C110.25326 (19)−0.11775 (19)0.46367 (18)0.0451 (8)
H11A0.2685−0.06370.47930.068*
H11B0.2873−0.15320.50470.068*
H11C0.2034−0.12560.46260.068*
C120.2294 (2)−0.21788 (17)0.3515 (2)0.0490 (8)
H12A0.1813−0.22670.35520.073*
H12B0.2654−0.25430.38880.073*
H12C0.2255−0.22640.29370.073*
C130.00905 (12)0.18436 (13)0.31980 (14)0.0220 (5)
H130.01570.15620.36960.026*
C140.00919 (13)0.26521 (14)0.32324 (15)0.0234 (5)
C150.02036 (16)0.30602 (16)0.40425 (17)0.0352 (6)
H15A0.02730.26720.44840.053*
H15B−0.02290.3380.39750.053*
H15C0.0640.33940.41970.053*
C1600.30546 (19)0.250.0254 (7)
H1600.36080.250.03*
C170.02288 (12)−0.14715 (13)0.32193 (14)0.0217 (5)
H170.0402−0.11920.37330.026*
C180.02260 (13)−0.22816 (14)0.32521 (15)0.0250 (5)
C190−0.26836 (19)0.250.0270 (7)
H190−0.32370.250.032*
C200.04651 (18)−0.26906 (16)0.40847 (17)0.0371 (6)
H20A0.0038−0.29360.41490.056*
H20B0.0683−0.23110.45360.056*
H20C0.083−0.30910.41120.056*
C210.0088 (6)0.5182 (7)0.3429 (6)0.0241 (15)0.5
C22−0.0610 (6)0.5206 (13)0.2802 (6)0.028 (2)0.5
H22−0.10320.52260.29460.034*0.5
C23−0.0690 (8)0.5202 (13)0.1965 (6)0.029 (2)0.5
H23−0.11670.52180.15370.035*0.5
C24−0.0072 (9)0.5173 (8)0.1755 (6)0.048 (4)0.5
H24−0.01260.5170.11830.057*0.5
C250.0627 (8)0.5149 (14)0.2382 (7)0.036 (3)0.5
H250.10490.5130.22390.044*0.5
C260.0706 (7)0.5154 (13)0.3219 (7)0.039 (3)0.5
H260.11840.51370.36480.047*0.5
C270.0179 (4)0.5168 (3)0.4338 (4)0.0368 (13)0.5
H27A0.01560.57020.4530.055*0.5
H27B0.06560.49370.46740.055*0.5
H27C−0.02160.48570.44010.055*0.5

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cr10.0213 (3)0.0152 (3)0.0155 (3)00.0016 (2)0
S10.0139 (3)0.0144 (3)0.0075 (3)−0.0006 (2)0.0026 (2)−0.00006 (19)
Si10.0257 (3)0.0285 (3)0.0204 (3)0.0003 (2)0.0066 (2)0.0009 (2)
O10.0229 (9)0.0295 (9)0.0131 (8)0.0027 (6)0.0061 (7)0.0011 (6)
O20.0225 (8)0.0255 (9)0.0236 (8)−0.0022 (7)0.0068 (7)−0.0024 (7)
O30.0275 (9)0.0237 (8)0.0200 (8)0.0046 (7)0.0067 (7)0.0016 (6)
N10.0193 (13)0.0177 (12)0.0214 (14)00.0041 (11)0
N20.0192 (13)0.0183 (13)0.0207 (13)00.0055 (11)0
C10.0275 (13)0.0318 (13)0.0137 (11)0.0027 (10)0.0088 (10)0.0008 (9)
C20.0471 (16)0.0386 (14)0.0239 (13)−0.0075 (12)0.0181 (12)−0.0066 (11)
C30.0457 (16)0.0467 (16)0.0183 (12)0.0147 (13)0.0136 (11)0.0066 (11)
C40.0306 (14)0.0506 (17)0.0263 (13)−0.0019 (12)0.0150 (11)0.0005 (11)
C50.0252 (12)0.0269 (12)0.0288 (13)−0.0064 (10)0.0087 (10)−0.0043 (10)
C60.0303 (14)0.0275 (13)0.0488 (17)−0.0019 (11)0.0118 (13)0.0023 (12)
C70.0284 (14)0.0377 (15)0.0408 (16)−0.0096 (11)0.0130 (12)−0.0052 (12)
C80.0353 (15)0.0412 (15)0.0335 (15)−0.0105 (12)0.0121 (12)−0.0136 (12)
C90.0285 (13)0.0301 (13)0.0300 (13)0.0100 (10)0.0125 (11)0.0108 (10)
C100.0298 (16)0.072 (2)0.060 (2)0.0130 (15)0.0159 (15)0.0320 (18)
C110.0519 (18)0.0530 (18)0.0287 (15)0.0221 (15)0.0133 (13)0.0149 (13)
C120.059 (2)0.0293 (15)0.063 (2)0.0131 (14)0.0279 (17)0.0060 (14)
C130.0190 (11)0.0231 (11)0.0215 (11)−0.0005 (9)0.0048 (9)0.0004 (9)
C140.0196 (11)0.0231 (11)0.0267 (12)−0.0001 (9)0.0076 (9)−0.0039 (9)
C150.0408 (15)0.0310 (13)0.0333 (14)0.0023 (11)0.0135 (12)−0.0091 (11)
C160.0237 (17)0.0175 (15)0.0328 (19)00.0082 (14)0
C170.0206 (11)0.0227 (11)0.0199 (11)−0.0007 (9)0.0054 (9)0.0005 (9)
C180.0240 (12)0.0216 (11)0.0275 (13)0.0002 (9)0.0073 (10)0.0048 (9)
C190.0297 (18)0.0162 (15)0.0338 (19)00.0105 (15)0
C200.0503 (17)0.0275 (13)0.0287 (14)−0.0016 (12)0.0094 (12)0.0078 (11)
C210.020 (4)0.014 (3)0.034 (4)−0.001 (2)0.006 (3)−0.003 (3)
C220.031 (5)0.018 (4)0.034 (4)0.001 (3)0.011 (4)−0.008 (4)
C230.025 (4)0.022 (4)0.032 (5)−0.002 (3)0.001 (3)−0.006 (4)
C240.090 (10)0.026 (5)0.038 (6)0.000 (5)0.036 (6)0.003 (4)
C250.039 (5)0.027 (5)0.050 (7)0.003 (4)0.026 (4)0.012 (6)
C260.045 (6)0.027 (6)0.047 (6)−0.001 (4)0.018 (6)0.003 (6)
C270.045 (3)0.024 (3)0.038 (3)0.000 (2)0.012 (3)0.000 (2)

Geometric parameters (Å, °)

Cr1—N12.136 (3)C10—H10A0.98
Cr1—N22.153 (3)C10—H10B0.98
Cr1—S1i2.4426 (6)C10—H10C0.98
Cr1—S12.4426 (6)C11—H11A0.98
S1—Si12.0694 (8)C11—H11B0.98
Si1—O31.6342 (17)C11—H11C0.98
Si1—O21.6370 (17)C12—H12A0.98
Si1—O11.6480 (17)C12—H12B0.98
O1—C11.460 (3)C12—H12C0.98
O2—C51.444 (3)C13—C141.388 (3)
O3—C91.441 (3)C13—H130.95
N1—C131.341 (3)C14—C161.389 (3)
N1—C13i1.341 (3)C14—C151.502 (3)
N2—C17i1.347 (3)C15—H15A0.98
N2—C171.347 (3)C15—H15B0.98
C1—C41.514 (4)C15—H15C0.98
C1—C21.520 (4)C16—C14i1.389 (3)
C1—C31.525 (3)C16—H160.95
C2—H2A0.98C17—C181.391 (3)
C2—H2B0.98C17—H170.95
C2—H2C0.98C18—C191.385 (3)
C3—H3A0.98C18—C201.504 (3)
C3—H3B0.98C19—C18i1.385 (3)
C3—H3C0.98C19—H190.95
C4—H4A0.98C20—H20A0.98
C4—H4B0.98C20—H20B0.98
C4—H4C0.98C20—H20C0.98
C5—C71.522 (4)C21—C221.39
C5—C81.526 (4)C21—C261.39
C5—C61.528 (4)C21—C271.508 (9)
C6—H6A0.98C22—C231.39
C6—H6B0.98C22—H220.95
C6—H6C0.98C23—C241.39
C7—H7A0.98C23—H230.95
C7—H7B0.98C24—C251.39
C7—H7C0.98C24—H240.95
C8—H8A0.98C25—C261.39
C8—H8B0.98C25—H250.95
C8—H8C0.98C26—H260.95
C9—C101.505 (4)C27—H27A0.98
C9—C111.516 (4)C27—H27B0.98
C9—C121.525 (4)C27—H27C0.98
N1—Cr1—N2180O3—C9—C11111.1 (2)
N1—Cr1—S1i88.677 (16)C10—C9—C11111.6 (3)
N2—Cr1—S1i91.323 (16)O3—C9—C12105.4 (2)
N1—Cr1—S188.677 (16)C10—C9—C12109.9 (3)
N2—Cr1—S191.323 (16)C11—C9—C12110.2 (2)
S1i—Cr1—S1177.35 (3)C9—C10—H10A109.5
Si1—S1—Cr189.91 (3)C9—C10—H10B109.5
O3—Si1—O2104.84 (9)H10A—C10—H10B109.5
O3—Si1—O1104.28 (9)C9—C10—H10C109.5
O2—Si1—O1112.30 (9)H10A—C10—H10C109.5
O3—Si1—S1115.77 (7)H10B—C10—H10C109.5
O2—Si1—S1113.67 (7)C9—C11—H11A109.5
O1—Si1—S1105.74 (7)C9—C11—H11B109.5
C1—O1—Si1130.23 (15)H11A—C11—H11B109.5
C5—O2—Si1132.12 (15)C9—C11—H11C109.5
C9—O3—Si1132.47 (16)H11A—C11—H11C109.5
C13—N1—C13i117.7 (3)H11B—C11—H11C109.5
C13—N1—Cr1121.16 (14)C9—C12—H12A109.5
C13i—N1—Cr1121.16 (14)C9—C12—H12B109.5
C17i—N2—C17117.0 (3)H12A—C12—H12B109.5
C17i—N2—Cr1121.49 (14)C9—C12—H12C109.5
C17—N2—Cr1121.49 (14)H12A—C12—H12C109.5
O1—C1—C4111.5 (2)H12B—C12—H12C109.5
O1—C1—C2108.63 (19)N1—C13—C14123.6 (2)
C4—C1—C2110.3 (2)N1—C13—H13118.2
O1—C1—C3105.24 (19)C14—C13—H13118.2
C4—C1—C3110.3 (2)C13—C14—C16117.4 (2)
C2—C1—C3110.8 (2)C13—C14—C15120.2 (2)
C1—C2—H2A109.5C16—C14—C15122.4 (2)
C1—C2—H2B109.5C14—C15—H15A109.5
H2A—C2—H2B109.5C14—C15—H15B109.5
C1—C2—H2C109.5H15A—C15—H15B109.5
H2A—C2—H2C109.5C14—C15—H15C109.5
H2B—C2—H2C109.5H15A—C15—H15C109.5
C1—C3—H3A109.5H15B—C15—H15C109.5
C1—C3—H3B109.5C14i—C16—C14120.4 (3)
H3A—C3—H3B109.5C14i—C16—H16119.8
C1—C3—H3C109.5C14—C16—H16119.8
H3A—C3—H3C109.5N2—C17—C18123.7 (2)
H3B—C3—H3C109.5N2—C17—H17118.2
C1—C4—H4A109.5C18—C17—H17118.2
C1—C4—H4B109.5C19—C18—C17117.6 (2)
H4A—C4—H4B109.5C19—C18—C20122.3 (2)
C1—C4—H4C109.5C17—C18—C20120.0 (2)
H4A—C4—H4C109.5C18—C19—C18i120.3 (3)
H4B—C4—H4C109.5C18—C19—H19119.9
O2—C5—C7105.6 (2)C18i—C19—H19119.9
O2—C5—C8108.3 (2)C18—C20—H20A109.5
C7—C5—C8110.5 (2)C18—C20—H20B109.5
O2—C5—C6110.9 (2)H20A—C20—H20B109.5
C7—C5—C6110.2 (2)C18—C20—H20C109.5
C8—C5—C6111.2 (2)H20A—C20—H20C109.5
C5—C6—H6A109.5H20B—C20—H20C109.5
C5—C6—H6B109.5C22—C21—C26120
H6A—C6—H6B109.5C22—C21—C27120.3 (4)
C5—C6—H6C109.5C26—C21—C27119.7 (4)
H6A—C6—H6C109.5C21—C22—C23120
H6B—C6—H6C109.5C21—C22—H22120
C5—C7—H7A109.5C23—C22—H22120
C5—C7—H7B109.5C24—C23—C22120
H7A—C7—H7B109.5C24—C23—H23120
C5—C7—H7C109.5C22—C23—H23120
H7A—C7—H7C109.5C23—C24—C25120
H7B—C7—H7C109.5C23—C24—H24120
C5—C8—H8A109.5C25—C24—H24120
C5—C8—H8B109.5C26—C25—C24120
H8A—C8—H8B109.5C26—C25—H25120
C5—C8—H8C109.5C24—C25—H25120
H8A—C8—H8C109.5C25—C26—C21120
H8B—C8—H8C109.5C25—C26—H26120
O3—C9—C10108.4 (2)C21—C26—H26120
N1—Cr1—S1—Si1−98.83 (2)Si1—O2—C5—C883.6 (3)
N2—Cr1—S1—Si181.17 (2)Si1—O2—C5—C6−38.7 (3)
Cr1—S1—Si1—O3−98.51 (7)Si1—O3—C9—C10−87.7 (3)
Cr1—S1—Si1—O2140.02 (7)Si1—O3—C9—C1135.3 (3)
Cr1—S1—Si1—O116.37 (7)Si1—O3—C9—C12154.7 (2)
O3—Si1—O1—C1−47.8 (2)C13i—N1—C13—C140.29 (17)
O2—Si1—O1—C165.2 (2)Cr1—N1—C13—C14−179.71 (17)
S1—Si1—O1—C1−170.29 (18)N1—C13—C14—C16−0.6 (3)
O3—Si1—O2—C5−167.93 (19)N1—C13—C14—C15−179.5 (2)
O1—Si1—O2—C579.5 (2)C13—C14—C16—C14i0.26 (15)
S1—Si1—O2—C5−40.5 (2)C15—C14—C16—C14i179.1 (3)
O2—Si1—O3—C952.9 (2)C17i—N2—C17—C18−1.29 (17)
O1—Si1—O3—C9171.1 (2)Cr1—N2—C17—C18178.71 (17)
S1—Si1—O3—C9−73.2 (2)N2—C17—C18—C192.5 (3)
S1i—Cr1—N1—C13135.55 (11)N2—C17—C18—C20−177.7 (2)
S1—Cr1—N1—C13−44.45 (11)C17—C18—C19—C18i−1.16 (15)
S1i—Cr1—N1—C13i−44.45 (11)C20—C18—C19—C18i179.0 (3)
S1—Cr1—N1—C13i135.55 (11)C26—C21—C22—C230
S1i—Cr1—N2—C17i31.46 (11)C27—C21—C22—C23−178.6 (12)
S1—Cr1—N2—C17i−148.54 (11)C21—C22—C23—C240
S1i—Cr1—N2—C17−148.54 (11)C22—C23—C24—C250
S1—Cr1—N2—C1731.46 (11)C23—C24—C25—C260
Si1—O1—C1—C4−35.4 (3)C24—C25—C26—C210
Si1—O1—C1—C286.4 (3)C22—C21—C26—C250
Si1—O1—C1—C3−154.96 (19)C27—C21—C26—C25178.6 (12)
Si1—O2—C5—C7−158.01 (18)

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2589).

References

  • Becker, B., Pladzyk, A., Konitz, A. & Wojnowski, W. (2002). Appl. Organomet. Chem.16, 517–524.
  • Ciborska, A., Baranowska, K. & Wojnowski, W. (2007). Acta Cryst. E63, m2972.
  • Ciborska, A., Baranowska, K. & Wojnowski, W. (2008). Acta Cryst E64, m46. [PMC free article] [PubMed]
  • Dołęga, A., Pladzyk, A., Baranowska, K. & Wieczerzak, M. (2008). Inorg. Chem. Commun.11, 847-850.
  • Dorfman, J. R., Rao, Ch. P. & Holm, R. H. (1985). Inorg. Chem 24, 453–454.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Perrin, D. D. & Armarego, W. L. F. (1988). In Purification of Laboratory Chemicals Oxford: Pergamon Press.
  • Piękoś, R. & Wojnowski, W. (1962). Z. Anorg. Allg. Chem 318, 212-216.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wojnowska, M. & Wojnowski, W. (1974). Z. Anorg. Allg. Chem 403, 179–185.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography