PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): m800.
Published online 2009 June 20. doi:  10.1107/S1600536809022880
PMCID: PMC2969382

Dichlorido[1-(8-quinolylimino­meth­yl)-2-naphtholato]iron(III)

Abstract

The FeIII ion in the title complex, [FeCl2(C20H13N2O)], has a distorted square-pyramidal coordination formed by one O atom and two N atoms from a tridentate 1-(8-quinolylimino­meth­yl)-2-naphtholate ligand and two Cl atoms. In the crystal structure, mol­ecules form a column structure along the a axis through π–π stacking inter­actions, with centroid–centroid distances of 3.657 (1) and 3.818 (2) Å. Weak C—H(...)Cl inter­actions are observed between the columns.

Related literature

For supra­molecular self-assembly, see: Crivillers & Furukawa (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m800-scheme1.jpg

Experimental

Crystal data

  • [FeCl2(C20H13N2O)]
  • M r = 424.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m800-efi1.jpg
  • a = 7.6177 (5) Å
  • b = 18.5256 (11) Å
  • c = 12.2073 (7) Å
  • β = 91.1612 (16)°
  • V = 1722.37 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.20 mm−1
  • T = 293 K
  • 0.80 × 0.20 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 2001 [triangle]) T min = 0.448, T max = 0.890
  • 17621 measured reflections
  • 3934 independent reflections
  • 3182 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.090
  • S = 1.08
  • 3934 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalClear (Molecular Structure Corporation and Rigaku, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Yadokari–XG (Wakita, 2000 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022880/is2429sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022880/is2429Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by ‘Development of Molecular Devices in Ferroelectric Metallomesogens’ in 2006 of the New Energy and Industrial Technology Development Organization (NEDO) of Japan and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Governement (No. 20350028).

supplementary crystallographic information

Comment

Self-assembly has been recognized as a most efficient process that organizes individual molecular components into highly ordered supramolecular species (Crivillers et al., 2009). The designed construction of supramolecules from molecular building blocks is noted as one of most challenging issues facing synthetic chemistry today. The method by using self-assembly is very important in developing novel molecular compounds with multi-functions. The cooperativity can be achieved by using π-π interactions as well as by using bridging ligands. We focused on a iron(III) complex with a qnal ligand [qnal = 1-(quinolin-8-yliminomethyl)-naphthalen-2-ol] having large π electron system. Here we report the synthesis and crystal structure of the title complex.

The FeIII ion in the title complex, [Fe(qnal)Cl2], has a distorted five coordination environment formed by one O atom and two N atoms from a qnal ligand, and two Cl atoms. The Fe—O bond length is shortest and the Fe—Cl bond length is longest. The π–π contacts between the benzene and pyridine rings, Cg1···Cg3i and Cg2···Cg3ii [symmetry codes: (i) -x, -y, 1 - z; (ii) 1 - x, -y, 1 - z, where Cg1, Cg2, Cg3 are centroids of the rings (N1/C1–C4/C9), (C4–C9) and (C11–/C15/C20), respectively] may stabilize the structure, with centroid-centroid distances of 3.657 (1) and 3.818 (2) Å, respectively. The molecules form a column structure by π-π stacking along the a axis. Three dimensional network is formed through C—H···Cl interactions between columns.

Experimental

The ligand molecule, qnal, was prepared from 8-aminoquinoline (4.2 mg, 0.03 mmol) and 2-hydroxy-1-naphthaldehyde (5.1 mg, 0.03 mmol), which were mixed in 10 ml methanol and heating on a oil bath for about 2 h under reflux. The title complex was prepared by slow diffusion of qnal (9.0 mg, 0.03 mmol) and FeCl3 (4.9 mg, 0.03 mmol) in methanol by using a H-form tube. After about one week, single crystals were obtained as black needles.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å) and were refined as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
ORTEP drawing of the title complex, showing 50% probability displacement ellipsoids.
Fig. 2.
Column structure for the title complex.
Fig. 3.
Part of the crystal structure, showing C—H···Cl interactions as dashed lines.

Crystal data

[FeCl2(C20H13N2O)]F(000) = 860
Mr = 424.07Dx = 1.635 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 15565 reflections
a = 7.6177 (5) Åθ = 3.1–27.7°
b = 18.5256 (11) ŵ = 1.20 mm1
c = 12.2073 (7) ÅT = 293 K
β = 91.1612 (16)°Needle, black
V = 1722.37 (18) Å30.80 × 0.20 × 0.10 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer3934 independent reflections
Radiation source: fine-focus sealed tube3182 reflections with I > 2σ(I)
graphiteRint = 0.034
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 2001)h = −9→9
Tmin = 0.448, Tmax = 0.890k = −24→23
17621 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0395P)2 + 0.7323P] where P = (Fo2 + 2Fc2)/3
3934 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.16122 (4)0.072865 (16)0.67792 (2)0.03433 (11)
C10.1279 (3)−0.04180 (15)0.8607 (2)0.0498 (6)
H10.0834−0.00420.90220.060*
C20.1519 (4)−0.10907 (17)0.9103 (2)0.0599 (7)
H20.1216−0.11610.98300.072*
C30.2195 (4)−0.16364 (16)0.8515 (2)0.0562 (7)
H30.2361−0.20860.88390.067*
C40.2653 (3)−0.15321 (13)0.74142 (19)0.0409 (5)
C50.3412 (3)−0.20622 (12)0.6755 (2)0.0485 (6)
H40.3632−0.25210.70350.058*
C60.3825 (3)−0.19030 (12)0.5702 (2)0.0451 (6)
H50.4356−0.22540.52760.054*
C70.3470 (3)−0.12257 (12)0.52462 (19)0.0401 (5)
H60.3743−0.11360.45200.048*
C80.2723 (3)−0.06922 (10)0.58598 (17)0.0306 (4)
C90.2340 (3)−0.08413 (11)0.69642 (17)0.0329 (4)
C100.2480 (3)0.01983 (11)0.44882 (17)0.0321 (4)
H70.2835−0.01670.40200.038*
C110.2188 (3)0.08832 (11)0.40091 (17)0.0327 (4)
C120.1502 (3)0.14570 (12)0.46229 (19)0.0399 (5)
C130.1253 (3)0.21425 (13)0.4125 (2)0.0495 (6)
H130.07670.25160.45260.059*
C140.1709 (3)0.22598 (14)0.3084 (2)0.0524 (7)
H120.15700.27190.27890.063*
C150.2392 (3)0.17054 (13)0.24256 (19)0.0441 (6)
C160.2835 (4)0.18369 (17)0.1329 (2)0.0600 (8)
H110.27330.23030.10520.072*
C170.3403 (4)0.13057 (19)0.0673 (2)0.0655 (8)
H100.36560.1400−0.00550.079*
C180.3606 (4)0.06130 (17)0.1099 (2)0.0586 (7)
H90.39890.02440.06470.070*
C190.3254 (3)0.04645 (14)0.21726 (19)0.0450 (6)
H80.34410.00010.24440.054*
C200.2612 (3)0.10040 (12)0.28673 (18)0.0354 (5)
N10.1657 (2)−0.02918 (10)0.75694 (14)0.0366 (4)
N20.2306 (2)0.00218 (9)0.55195 (14)0.0305 (4)
O10.1072 (3)0.13872 (9)0.56416 (14)0.0559 (5)
Cl10.40989 (8)0.11675 (4)0.74667 (6)0.05373 (18)
Cl2−0.06535 (9)0.11031 (4)0.77771 (7)0.0629 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.03643 (18)0.03247 (18)0.03430 (17)0.00072 (13)0.00555 (13)−0.00741 (13)
C10.0496 (15)0.0636 (17)0.0365 (12)−0.0030 (13)0.0074 (11)0.0006 (12)
C20.0656 (18)0.076 (2)0.0387 (14)−0.0091 (16)0.0045 (13)0.0150 (14)
C30.0592 (17)0.0552 (16)0.0539 (15)−0.0136 (13)−0.0071 (13)0.0222 (13)
C40.0372 (12)0.0376 (12)0.0476 (13)−0.0079 (10)−0.0082 (10)0.0090 (10)
C50.0510 (15)0.0290 (12)0.0650 (16)−0.0031 (11)−0.0136 (13)0.0054 (11)
C60.0474 (14)0.0306 (11)0.0569 (15)0.0025 (10)−0.0076 (12)−0.0099 (10)
C70.0459 (13)0.0345 (12)0.0400 (12)0.0007 (10)0.0006 (10)−0.0067 (9)
C80.0299 (10)0.0264 (10)0.0354 (11)−0.0023 (8)−0.0013 (8)−0.0019 (8)
C90.0282 (10)0.0336 (11)0.0367 (11)−0.0055 (9)−0.0026 (8)0.0006 (9)
C100.0328 (11)0.0313 (11)0.0322 (10)0.0007 (9)0.0034 (8)−0.0047 (8)
C110.0314 (11)0.0317 (11)0.0348 (11)−0.0002 (9)−0.0015 (9)−0.0010 (8)
C120.0397 (12)0.0377 (12)0.0420 (12)0.0075 (10)−0.0076 (10)−0.0035 (10)
C130.0530 (15)0.0365 (13)0.0583 (16)0.0138 (11)−0.0138 (12)−0.0061 (11)
C140.0528 (16)0.0383 (13)0.0654 (18)0.0043 (11)−0.0165 (13)0.0139 (12)
C150.0390 (13)0.0461 (14)0.0466 (13)−0.0034 (11)−0.0099 (10)0.0126 (11)
C160.0582 (17)0.0689 (19)0.0525 (16)−0.0071 (15)−0.0085 (14)0.0291 (14)
C170.0636 (19)0.092 (2)0.0408 (14)−0.0143 (17)0.0042 (13)0.0187 (15)
C180.0532 (16)0.080 (2)0.0431 (14)−0.0083 (14)0.0114 (12)−0.0013 (14)
C190.0465 (14)0.0495 (14)0.0391 (12)−0.0061 (11)0.0077 (11)0.0021 (11)
C200.0307 (11)0.0381 (11)0.0372 (11)−0.0044 (9)−0.0033 (9)0.0049 (9)
N10.0371 (10)0.0410 (10)0.0317 (9)−0.0036 (8)0.0040 (8)−0.0004 (8)
N20.0339 (9)0.0276 (8)0.0301 (9)0.0004 (7)0.0020 (7)−0.0019 (7)
O10.0798 (13)0.0474 (10)0.0406 (9)0.0282 (9)0.0024 (9)−0.0061 (8)
Cl10.0437 (3)0.0501 (4)0.0674 (4)−0.0116 (3)0.0018 (3)−0.0121 (3)
Cl20.0552 (4)0.0489 (4)0.0858 (5)0.0031 (3)0.0354 (4)−0.0098 (3)

Geometric parameters (Å, °)

Fe1—O11.8876 (17)C9—N11.367 (3)
Fe1—N22.0957 (17)C10—C111.413 (3)
Fe1—N12.1223 (19)C10—N21.310 (3)
Fe1—Cl12.2111 (7)C10—H70.9300
Fe1—Cl22.2426 (7)C11—C121.407 (3)
C1—C21.396 (4)C11—C201.454 (3)
C1—N11.325 (3)C12—C131.419 (3)
C1—H10.9300C12—O11.299 (3)
C2—C31.349 (4)C13—C141.342 (4)
C2—H20.9300C13—H130.9300
C3—C41.408 (3)C14—C151.410 (4)
C3—H30.9300C14—H120.9300
C4—C51.402 (3)C15—C161.408 (4)
C4—C91.411 (3)C15—C201.416 (3)
C5—C61.362 (4)C16—C171.346 (4)
C5—H40.9300C16—H110.9300
C6—H50.9300C17—H100.9300
C6—C71.397 (3)C18—C171.392 (4)
C7—C81.371 (3)C18—H90.9300
C7—H60.9300C19—C181.371 (3)
C8—C91.412 (3)C19—H80.9300
C8—N21.420 (3)C20—C191.405 (3)
Fe1—N1—C1126.14 (17)C11—C20—C15118.6 (2)
Fe1—N1—C9114.86 (14)C11—C20—C19123.8 (2)
Fe1—N2—C8115.18 (13)C12—C11—C20119.1 (2)
Fe1—N2—C10125.53 (14)C12—C13—H13119.5
Fe1—O1—C12135.52 (15)C13—C12—O1117.7 (2)
C1—C2—C3119.1 (2)C13—C14—C15121.8 (2)
C1—C2—H2120.5C13—C14—H12119.1
C1—N1—C9118.5 (2)C14—C13—C12121.1 (2)
C2—C1—N1122.9 (3)C14—C13—H13119.5
C2—C1—H1118.5C14—C15—C20119.6 (2)
C2—C3—C4120.7 (2)C15—C14—H12119.1
C2—C3—H3119.7C15—C16—H11119.2
C3—C2—H2120.5C15—C20—C19117.6 (2)
C3—C4—C5124.4 (2)C16—C15—C14120.9 (2)
C3—C4—C9116.9 (2)C16—C15—C20119.5 (2)
C4—C3—H3119.7C16—C17—C18119.1 (3)
C4—C5—C6119.8 (2)C16—C17—H10120.4
C4—C5—H4120.1C17—C16—C15121.7 (3)
C4—C9—C8120.8 (2)C17—C16—H11119.2
C4—C9—N1121.9 (2)C17—C18—C19121.3 (3)
C5—C4—C9118.7 (2)C17—C18—H9119.3
C5—C6—C7121.6 (2)C18—C17—H10120.4
C5—C6—H5119.2C18—C19—C20120.8 (3)
C6—C5—H4120.1C18—C19—H8119.6
C6—C7—C8120.6 (2)C19—C18—H9119.3
C6—C7—H6119.7C20—C19—H8119.6
C7—C6—H5119.2N1—Fe1—N277.00 (7)
C7—C8—C9118.47 (19)N1—Fe1—O1155.70 (8)
C7—C8—N2127.17 (19)N1—Fe1—Cl198.59 (5)
C8—C7—H6119.7N1—Fe1—Cl291.95 (5)
C8—C9—N1117.29 (19)N1—C1—H1118.5
C8—N2—C10119.16 (17)N2—Fe1—O185.32 (7)
C9—C8—N2114.34 (18)N2—Fe1—Cl1106.34 (5)
C10—C11—C12121.0 (2)N2—Fe1—Cl2143.16 (5)
C10—C11—C20119.91 (19)N2—C10—H7116.4
C11—C10—N2127.14 (19)O1—Fe1—Cl1102.35 (7)
C11—C10—H7116.4O1—Fe1—Cl292.36 (6)
C11—C12—C13119.7 (2)Cl1—Fe1—Cl2110.06 (3)
C11—C12—O1122.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H12···Cl1i0.932.813.598 (2)143
C19—H8···Cl1ii0.932.863.656 (2)144

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2429).

References

  • Crivillers, N. & Furukawa, S. (2009). J. Am. Chem. Soc.131, 6246–6252. [PubMed]
  • Higashi, T. (2001). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Molecular Structure Corporation and Rigaku (2002). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Wakita, K. (2000). Yadokari–XG Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography