PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 July 1; 65(Pt 7): o1670.
Published online 2009 June 24. doi:  10.1107/S1600536809022740
PMCID: PMC2969379

N-[2-(2-Chloro­phen­yl)-2-hydroxy­ethyl]propan-2-aminium hemioxalate

Abstract

The asymmetric unit of the title compound, C11H17ClNO+·0.5C2O4 2−, consists of one N-[2-(2-chloro­phen­yl)-2-hydroxy­ethyl]propan-2-ammonium cation and one-half of a centrosymmetric oxalate anion. In the cation, the C/C/N plane of the ethyl­ammonium group is almost perpendicular to the benzene ring, with a dihedral angle of 88.72 (17)°. In the crystal structure, the two components are connected by O—H(...)O and N—H(...)O hydrogen bonds, forming a supra­molecular tape along the a axis. Between the tapes, a C—H(...)O inter­action is observed.

Related literature

For related structures, see: Czugler et al. (2007 [triangle]); Marsau et al. (1979 [triangle]); Martin & Pinkerton (1998 [triangle]); Tang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1670-scheme1.jpg

Experimental

Crystal data

  • C11H17ClNO+·0.5C2O4 2−
  • M r = 258.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1670-efi1.jpg
  • a = 6.9951 (3) Å
  • b = 17.8821 (8) Å
  • c = 11.2236 (6) Å
  • β = 110.8377 (13)°
  • V = 1312.10 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 296 K
  • 0.53 × 0.24 × 0.22 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.836, T max = 0.939
  • 12562 measured reflections
  • 2978 independent reflections
  • 1974 reflections with F 2 > 2σ(F 2)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.089
  • S = 1.00
  • 2978 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022740/is2425sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022740/is2425Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Many crystalline compounds of oxalic acid has been studied previously (Marsau et al., 1979; Martin & Pinkerton, 1998; Czugler et al., 2007). To test the capability of oxalic acid we have synthesized the title compound, (I), containing oxalic acid and clorprenaline (Tang et al., 2009) which is one of a series of structurally related β-adrenoceptorblocking drugs.

Association of one clorprenaline and half of oxalic acid acid molecule leads to the title compound (Fig. 1). Compared with previous studies, in (I), there are no unusual bond distances or angles. In the molecule of clorprenaline the Cl atom and the phenyl plane is almost planar with the deviation of 0.0115 Å.The dihedral angle between the plane formed by C1/C2/C8 and the benzene plane is 88.4°, which shows that the two planes are almost perpendicular.

O—H···O and N—H···O hydrogen bonds are found in the cystal structure and are essential forces in crystal formation.

Experimental

Racemic clorprenaline was prepared by clorprenaline hydrochloride purchased from ShangHai Shengxin Medicine & Chemical Co., Ltd. ShangHai, China. Clorprenaline hydrochloride and NaOH in a molar ratio of 1:1 were mixed and dissolved in a methanol-water solution (1:1 v/v). The precipitate formed was filtered off, washed with water and dried. It was used without further purification. Racemic Clorprenaline (0.5 g, 0.0023 mol) was dissolved in ethanol (20 ml) and oxalic acid (0.21, 0.0023 mol) was dissolved in water (10 ml). The mixture was dissovled by heating to 353 K where a clear solution resulted. The resulting solution was concentrated and colorless block-shaped crystals of (I) were obtained within two weeks at room temperature.

Refinement

H atoms were placed in calculated positions and allowed to ride on their parent atoms with C—H = 0.93 (aromatic), 0.98 (methine), 0.97 (methylene) and 0.96 (methyl) Å, O—H = 0.82 Å, and N—H = 0.86 Å, and with Uiso(H) = 1.2–1.5Ueq of the parent atoms.

Figures

Fig. 1.
The molecular structure of the title compound with atom labels, showing 40% probability displacement ellipsoids. The dashed line shows an N—H···O hydrogen bond.

Crystal data

C11H17ClNO+·0.5C2O42F(000) = 548.00
Mr = 258.72Dx = 1.310 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 8056 reflections
a = 6.9951 (3) Åθ = 3.0–27.4°
b = 17.8821 (8) ŵ = 0.29 mm1
c = 11.2236 (6) ÅT = 296 K
β = 110.8377 (13)°Chunk, colorless
V = 1312.10 (11) Å30.53 × 0.24 × 0.22 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer1974 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.032
ω scansθmax = 27.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −8→9
Tmin = 0.836, Tmax = 0.939k = −23→23
12562 measured reflectionsl = −14→14
2978 independent reflections

Refinement

Refinement on F2w = 1/[σ2(Fo2) + (0.01P)2 + P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max < 0.001
wR(F2) = 0.089Δρmax = 0.26 e Å3
S = 1.00Δρmin = −0.28 e Å3
2978 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008)
156 parametersExtinction coefficient: 0.0233 (11)
H-atom parameters constrained

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement using reflections with F2 > 2.0 σ(F2). The weighted R-factor(wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.23746 (9)0.45230 (3)0.93857 (6)0.0615 (2)
O1−0.11289 (19)0.65111 (8)0.75048 (13)0.0482 (3)
O20.7592 (2)0.51348 (8)0.52819 (14)0.0533 (4)
O30.5489 (2)0.57840 (8)0.59837 (14)0.0545 (4)
N10.1107 (2)0.60395 (9)0.59068 (14)0.0407 (3)
C10.0439 (2)0.59654 (11)0.79473 (18)0.0388 (4)
C20.1458 (2)0.60032 (11)0.93762 (18)0.0396 (4)
C30.2344 (2)0.53840 (12)1.0113 (2)0.0444 (4)
C40.3216 (3)0.54182 (14)1.1422 (2)0.0586 (6)
C50.3270 (3)0.60876 (17)1.2028 (2)0.0660 (6)
C60.2451 (3)0.67209 (14)1.1332 (2)0.0625 (6)
C70.1541 (3)0.66749 (12)1.0015 (2)0.0508 (5)
C80.2025 (2)0.60998 (12)0.73238 (19)0.0449 (4)
C90.0455 (3)0.67572 (12)0.5169 (2)0.0551 (5)
C100.2283 (4)0.72303 (14)0.5249 (2)0.0847 (8)
C11−0.0786 (4)0.65560 (18)0.3802 (2)0.0861 (9)
C120.5890 (2)0.52673 (10)0.53649 (18)0.0392 (4)
H1−0.01600.54680.77080.047*
H40.37630.49911.18900.070*
H50.38600.61151.29120.079*
H60.25090.71771.17430.075*
H70.09750.71020.95510.061*
H9−0.04140.70390.55280.066*
H810.31050.57310.76400.054*
H820.25960.65970.75480.054*
H1010.31960.69450.49590.102*
H1020.29820.73820.61160.102*
H1030.18350.76650.47210.102*
H1110.00520.62790.34420.103*
H112−0.19380.62570.37790.103*
H113−0.12610.70050.33180.103*
H201−0.21980.63150.70420.056*
H3010.00450.57580.57260.049*
H3020.19960.58290.56490.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0558 (3)0.0521 (3)0.0871 (4)0.0098 (2)0.0383 (3)0.0072 (2)
O10.0378 (7)0.0493 (8)0.0556 (9)0.0046 (6)0.0144 (6)−0.0037 (6)
O20.0357 (7)0.0627 (9)0.0671 (10)−0.0080 (6)0.0252 (6)−0.0189 (7)
O30.0411 (7)0.0567 (8)0.0662 (10)0.0009 (6)0.0198 (7)−0.0194 (7)
N10.0394 (8)0.0443 (8)0.0430 (9)0.0000 (7)0.0206 (7)−0.0041 (7)
C10.0341 (9)0.0391 (9)0.0451 (11)−0.0016 (8)0.0164 (8)−0.0018 (8)
C20.0328 (9)0.0469 (10)0.0428 (11)−0.0061 (8)0.0182 (8)−0.0007 (8)
C30.0328 (9)0.0549 (12)0.0512 (12)0.0008 (8)0.0221 (8)0.0040 (9)
C40.0411 (11)0.0856 (17)0.0540 (14)0.0099 (11)0.0230 (10)0.0188 (12)
C50.0499 (12)0.101 (2)0.0460 (13)−0.0074 (13)0.0160 (10)0.0018 (14)
C60.0678 (14)0.0711 (16)0.0518 (14)−0.0222 (13)0.0254 (11)−0.0182 (12)
C70.0561 (12)0.0492 (11)0.0501 (13)−0.0104 (10)0.0225 (10)−0.0045 (9)
C80.0356 (9)0.0569 (12)0.0440 (11)−0.0018 (9)0.0163 (8)−0.0020 (9)
C90.0627 (13)0.0510 (12)0.0593 (14)0.0133 (10)0.0313 (11)0.0094 (10)
C100.111 (2)0.0592 (15)0.087 (2)−0.0184 (15)0.0387 (18)0.0117 (14)
C110.0840 (19)0.106 (2)0.0580 (17)−0.0009 (17)0.0130 (14)0.0242 (15)
C120.0346 (9)0.0427 (10)0.0420 (10)0.0026 (8)0.0158 (8)0.0021 (8)

Geometric parameters (Å, °)

Cl1—C31.746 (2)O1—H2010.822
O1—C11.419 (2)N1—H3010.860
O2—C121.249 (2)N1—H3020.860
O3—C121.246 (2)C1—H10.980
N1—C81.492 (2)C4—H40.930
N1—C91.507 (2)C5—H50.930
C1—C21.507 (2)C6—H60.930
C1—C81.527 (3)C7—H70.930
C2—C31.389 (2)C8—H810.970
C2—C71.389 (2)C8—H820.970
C3—C41.377 (3)C9—H90.980
C4—C51.371 (3)C10—H1010.960
C5—C61.379 (3)C10—H1020.960
C6—C71.388 (3)C10—H1030.960
C9—C101.509 (4)C11—H1110.960
C9—C111.513 (3)C11—H1120.960
C12—C12i1.552 (2)C11—H1130.960
C8—N1—C9117.09 (15)C8—C1—H1109.1
O1—C1—C2110.83 (16)C3—C4—H4120.3
O1—C1—C8109.18 (16)C5—C4—H4120.3
C2—C1—C8109.57 (14)C4—C5—H5119.9
C1—C2—C3122.66 (18)C6—C5—H5119.9
C1—C2—C7120.33 (17)C5—C6—H6120.2
C3—C2—C7117.01 (17)C7—C6—H6120.2
Cl1—C3—C2120.12 (15)C2—C7—H7119.3
Cl1—C3—C4117.61 (17)C6—C7—H7119.3
C2—C3—C4122.3 (2)N1—C8—H81108.9
C3—C4—C5119.5 (2)N1—C8—H82108.9
C4—C5—C6120.2 (2)C1—C8—H81108.9
C5—C6—C7119.7 (2)C1—C8—H82108.9
C2—C7—C6121.31 (19)H81—C8—H82109.5
N1—C8—C1111.70 (14)N1—C9—H9108.9
N1—C9—C10111.11 (17)C10—C9—H9108.9
N1—C9—C11107.88 (18)C11—C9—H9108.9
C10—C9—C11111.2 (2)C9—C10—H101109.5
O2—C12—O3126.27 (16)C9—C10—H102109.5
O2—C12—C12i116.79 (17)C9—C10—H103109.5
O3—C12—C12i116.94 (17)H101—C10—H102109.5
C1—O1—H201110.2H101—C10—H103109.5
C8—N1—H301107.5H102—C10—H103109.5
C8—N1—H302107.5C9—C11—H111109.5
C9—N1—H301107.5C9—C11—H112109.5
C9—N1—H302107.5C9—C11—H113109.5
H301—N1—H302109.5H111—C11—H112109.5
O1—C1—H1109.1H111—C11—H113109.5
C2—C1—H1109.1H112—C11—H113109.5
C8—N1—C9—C1068.7 (2)C1—C2—C7—C6179.3 (2)
C8—N1—C9—C11−169.2 (2)C3—C2—C7—C6−0.7 (3)
C9—N1—C8—C196.3 (2)C7—C2—C3—Cl1−178.20 (17)
O1—C1—C2—C3151.32 (19)C7—C2—C3—C42.0 (3)
O1—C1—C2—C7−28.6 (2)Cl1—C3—C4—C5178.38 (19)
O1—C1—C8—N1−60.6 (2)C2—C3—C4—C5−1.8 (3)
C2—C1—C8—N1177.85 (15)C3—C4—C5—C60.2 (3)
C8—C1—C2—C3−88.1 (2)C4—C5—C6—C71.1 (4)
C8—C1—C2—C791.9 (2)C5—C6—C7—C2−0.9 (3)
C1—C2—C3—Cl11.9 (2)O2—C12—C12i—O3i−0.5 (2)
C1—C2—C3—C4−177.9 (2)O3—C12—C12i—O2i0.5 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H201···O3ii0.821.892.707 (2)175
N1—H301···O2ii0.861.962.816 (2)179
N1—H302···O30.862.343.070 (2)143
N1—H302···O2i0.862.092.807 (2)141
C6—H6···O1iii0.932.563.433 (3)156

Symmetry codes: (ii) x−1, y, z; (i) −x+1, −y+1, −z+1; (iii) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2425).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Czugler, M., Körtvelyesi, T., Fabian, L., Sipos, M. & Keglevich, G. (2007). CrystEngComm, 9, 561–565.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Marsau, P., Cotrait, M. & Leroy, F. (1979). Acta Cryst. B35, 2278–2280.
  • Martin, A. & Pinkerton, A. A. (1998). Acta Cryst. B54, 471–477.
  • Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tang, Z., Xu, M., Zheng, G.-R. & Feng, H. (2009). Acta Cryst. E65, o1501. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography